These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 8744306)

  • 1. Identification of cystic fibrosis transmembrane conductance regulator channel-lining residues in and flanking the M6 membrane-spanning segment.
    Cheung M; Akabas MH
    Biophys J; 1996 Jun; 70(6):2688-95. PubMed ID: 8744306
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Locating the anion-selectivity filter of the cystic fibrosis transmembrane conductance regulator (CFTR) chloride channel.
    Cheung M; Akabas MH
    J Gen Physiol; 1997 Mar; 109(3):289-99. PubMed ID: 9089437
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Channel-lining residues in the M3 membrane-spanning segment of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH
    Biochemistry; 1998 Sep; 37(35):12233-40. PubMed ID: 9724537
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Amino acid residues lining the chloride channel of the cystic fibrosis transmembrane conductance regulator.
    Akabas MH; Kaufmann C; Cook TA; Archdeacon P
    J Biol Chem; 1994 May; 269(21):14865-8. PubMed ID: 7515047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Probing the structural and functional domains of the CFTR chloride channel.
    Akabas MH; Cheung M; Guinamard R
    J Bioenerg Biomembr; 1997 Oct; 29(5):453-63. PubMed ID: 9511930
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Interaction of picrotoxin with GABAA receptor channel-lining residues probed in cysteine mutants.
    Xu M; Covey DF; Akabas MH
    Biophys J; 1995 Nov; 69(5):1858-67. PubMed ID: 8580329
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Alignment of transmembrane regions in the cystic fibrosis transmembrane conductance regulator chloride channel pore.
    Wang W; El Hiani Y; Linsdell P
    J Gen Physiol; 2011 Aug; 138(2):165-78. PubMed ID: 21746847
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Changes in accessibility of cytoplasmic substances to the pore associated with activation of the cystic fibrosis transmembrane conductance regulator chloride channel.
    El Hiani Y; Linsdell P
    J Biol Chem; 2010 Oct; 285(42):32126-40. PubMed ID: 20675380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Intracellular cysteines of the cystic fibrosis transmembrane conductance regulator (CFTR) modulate channel gating.
    Ketchum CJ; Yue H; Alessi KA; Devidas S; Guggino WB; Maloney PC
    Cell Physiol Biochem; 2002; 12(1):1-8. PubMed ID: 11914543
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Novel residues lining the CFTR chloride channel pore identified by functional modification of introduced cysteines.
    Fatehi M; Linsdell P
    J Membr Biol; 2009 Apr; 228(3):151-64. PubMed ID: 19381710
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The Fifth Transmembrane Segment of Cystic Fibrosis Transmembrane Conductance Regulator Contributes to Its Anion Permeation Pathway.
    Zhang J; Hwang TC
    Biochemistry; 2015 Jun; 54(24):3839-50. PubMed ID: 26024338
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual roles of the sixth transmembrane segment of the CFTR chloride channel in gating and permeation.
    Bai Y; Li M; Hwang TC
    J Gen Physiol; 2010 Sep; 136(3):293-309. PubMed ID: 20805575
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator: temperature-dependent cysteine reactivity suggests different stable conformers of the conduction pathway.
    Liu X; Dawson DC
    Biochemistry; 2011 Nov; 50(47):10311-7. PubMed ID: 22014307
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Identification of channel-lining residues in the M2 membrane-spanning segment of the GABA(A) receptor alpha1 subunit.
    Xu M; Akabas MH
    J Gen Physiol; 1996 Feb; 107(2):195-205. PubMed ID: 8833341
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Functional roles of nonconserved structural segments in CFTR's NH2-terminal nucleotide binding domain.
    Csanády L; Chan KW; Nairn AC; Gadsby DC
    J Gen Physiol; 2005 Jan; 125(1):43-55. PubMed ID: 15596536
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational changes in a pore-lining helix coupled to cystic fibrosis transmembrane conductance regulator channel gating.
    Beck EJ; Yang Y; Yaemsiri S; Raghuram V
    J Biol Chem; 2008 Feb; 283(8):4957-66. PubMed ID: 18056267
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of recombinant cardiac cystic fibrosis transmembrane conductance regulator chloride channels by protein kinase C.
    Yamazaki J; Britton F; Collier ML; Horowitz B; Hume JR
    Biophys J; 1999 Apr; 76(4):1972-87. PubMed ID: 10096895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Identification of acetylcholine receptor channel-lining residues in the entire M2 segment of the alpha subunit.
    Akabas MH; Kaufmann C; Archdeacon P; Karlin A
    Neuron; 1994 Oct; 13(4):919-27. PubMed ID: 7524560
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cysteine substitutions reveal dual functions of the amino-terminal tail in cystic fibrosis transmembrane conductance regulator channel gating.
    Fu J; Kirk KL
    J Biol Chem; 2001 Sep; 276(38):35660-8. PubMed ID: 11468285
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A cluster of aromatic residues in the sixth membrane-spanning segment of the dopamine D2 receptor is accessible in the binding-site crevice.
    Javitch JA; Ballesteros JA; Weinstein H; Chen J
    Biochemistry; 1998 Jan; 37(4):998-1006. PubMed ID: 9454590
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.