These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

263 related articles for article (PubMed ID: 8744315)

  • 1. Membrane binding of the colicin E1 channel: activity requires an electrostatic interaction of intermediate magnitude.
    Zakharov SD; Heymann JB; Zhang YL; Cramer WA
    Biophys J; 1996 Jun; 70(6):2774-83. PubMed ID: 8744315
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Characterization of electrostatic and nonelectrostatic components of protein--membrane binding interactions.
    Heymann JB; Zakharov SD; Zhang YL; Cramer WA
    Biochemistry; 1996 Feb; 35(8):2717-25. PubMed ID: 8611578
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification of a chameleon-like pH-sensitive segment within the colicin E1 channel domain that may serve as the pH-activated trigger for membrane bilayer association.
    Merrill AR; Steer BA; Prentice GA; Weller MJ; Szabo AG
    Biochemistry; 1997 Jun; 36(23):6874-84. PubMed ID: 9188682
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanism for toxin insertion into membranes is suggested by the crystal structure of the channel-forming domain of colicin E1.
    Elkins P; Bunker A; Cramer WA; Stauffacher CV
    Structure; 1997 Mar; 5(3):443-58. PubMed ID: 9083117
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Kinetic description of structural changes linked to membrane import of the colicin E1 channel protein.
    Zakharov SD; Lindeberg M; Cramer WA
    Biochemistry; 1999 Aug; 38(35):11325-32. PubMed ID: 10471282
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Protein transduction domains of HIV-1 and SIV TAT interact with charged lipid vesicles. Binding mechanism and thermodynamic analysis.
    Ziegler A; Blatter XL; Seelig A; Seelig J
    Biochemistry; 2003 Aug; 42(30):9185-94. PubMed ID: 12885253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of anionic lipid and ion concentrations on the topology and segmental mobility of colicin Ia channel domain from solid-state NMR.
    Yao XL; Hong M
    Biochemistry; 2006 Jan; 45(1):289-95. PubMed ID: 16388605
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lipid-mediated inactivation of colicin E1 channels by calcium ions.
    Sobko AA; Kotova EA; Zakharov SD; Cramer WA; Antonenko YN
    Biochemistry (Mosc); 2006 Jan; 71(1):99-103. PubMed ID: 16457626
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Protein-fluctuation-induced water-pore formation in ion channel voltage-sensor translocation across a lipid bilayer membrane.
    Rajapaksha SP; Pal N; Zheng D; Lu HP
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015; 92(5):052719. PubMed ID: 26651735
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Histidine 440 controls the opening of colicin E1 channels in a lipid-dependent manner.
    Sobko AA; Rokitskaya TI; Kotova EA
    Biochim Biophys Acta; 2009 Sep; 1788(9):1962-6. PubMed ID: 19560438
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Tuning the membrane surface potential for efficient toxin import.
    Zakharov SD; Rokitskaya TI; Shapovalov VL; Antonenko YN; Cramer WA
    Proc Natl Acad Sci U S A; 2002 Jun; 99(13):8654-9. PubMed ID: 12060711
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of lipids with different spontaneous curvature on the channel activity of colicin E1: evidence in favor of a toroidal pore.
    Sobko AA; Kotova EA; Antonenko YN; Zakharov SD; Cramer WA
    FEBS Lett; 2004 Oct; 576(1-2):205-10. PubMed ID: 15474038
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Site-directed mutagenesis of the charged residues near the carboxy terminus of the colicin E1 ion channel.
    Shiver JW; Cohen FS; Merrill AR; Cramer WA
    Biochemistry; 1988 Nov; 27(22):8421-8. PubMed ID: 2468358
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Colicin E1 binding to membranes: time-resolved studies of spin-labeled mutants.
    Shin YK; Levinthal C; Levinthal F; Hubbell WL
    Science; 1993 Feb; 259(5097):960-3. PubMed ID: 8382373
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ion selectivity of colicin E1: modulation by pH and membrane composition.
    Bullock JO
    J Membr Biol; 1992 Feb; 125(3):255-71. PubMed ID: 1372939
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The role of electrostatic charge in the membrane insertion of colicin A. Calculation and mutation.
    Lakey JH; Parker MW; González-Mañas JM; Duché D; Vriend G; Baty D; Pattus F
    Eur J Biochem; 1994 Feb; 220(1):155-63. PubMed ID: 8119283
    [TBL] [Abstract][Full Text] [Related]  

  • 17. In Situ Electrochemical and PM-IRRAS Studies of Colicin E1 Ion Channels in the Floating Bilayer Lipid Membrane.
    Su Z; Ho D; Merrill AR; Lipkowski J
    Langmuir; 2019 Jun; 35(25):8452-8459. PubMed ID: 31194562
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Orientational distribution of alpha-helices in the colicin B and E1 channel domains: a one and two dimensional 15N solid-state NMR investigation in uniaxially aligned phospholipid bilayers.
    Lambotte S; Jasperse P; Bechinger B
    Biochemistry; 1998 Jan; 37(1):16-22. PubMed ID: 9453746
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Colicin crystal structures: pathways and mechanisms for colicin insertion into membranes.
    Zakharov SD; Cramer WA
    Biochim Biophys Acta; 2002 Oct; 1565(2):333-46. PubMed ID: 12409205
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electrostatic interactions of colicin E1 with the surface of Escherichia coli total lipid.
    Tian C; Tétreault E; Huang CK; Dahms TE
    Biochim Biophys Acta; 2006 Jun; 1758(6):693-701. PubMed ID: 16716249
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.