These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 8744318)

  • 1. Stretch activation and nonlinear elasticity of muscle cross-bridges.
    Thomas N; Thornhill RA
    Biophys J; 1996 Jun; 70(6):2807-18. PubMed ID: 8744318
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Passive tension and stiffness of vertebrate skeletal and insect flight muscles: the contribution of weak cross-bridges and elastic filaments.
    Granzier HL; Wang K
    Biophys J; 1993 Nov; 65(5):2141-59. PubMed ID: 8298040
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A theory of tension fluctuations due to muscle cross-bridges.
    Thomas N; Thornhill RA
    Proc Biol Sci; 1995 Mar; 259(1356):235-42. PubMed ID: 7740044
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Distributed representations for actin-myosin interaction in the oscillatory contraction of muscle.
    Thorson J; White DC
    Biophys J; 1969 Mar; 9(3):360-90. PubMed ID: 5780714
    [TBL] [Abstract][Full Text] [Related]  

  • 5. X-ray diffraction evidence for the extensibility of actin and myosin filaments during muscle contraction.
    Wakabayashi K; Sugimoto Y; Tanaka H; Ueno Y; Takezawa Y; Amemiya Y
    Biophys J; 1994 Dec; 67(6):2422-35. PubMed ID: 7779179
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effect of the lattice spacing change on cross-bridge kinetics in chemically skinned rabbit psoas muscle fibers. II. Elementary steps affected by the spacing change.
    Zhao Y; Kawai M
    Biophys J; 1993 Jan; 64(1):197-210. PubMed ID: 7679297
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The stiffness of rabbit skeletal actomyosin cross-bridges determined with an optical tweezers transducer.
    Veigel C; Bartoo ML; White DC; Sparrow JC; Molloy JE
    Biophys J; 1998 Sep; 75(3):1424-38. PubMed ID: 9726944
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cross-bridge attachment during high-speed active shortening of skinned fibers of the rabbit psoas muscle: implications for cross-bridge action during maximum velocity of filament sliding.
    Stehle R; Brenner B
    Biophys J; 2000 Mar; 78(3):1458-73. PubMed ID: 10692331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Strain-dependent cross-bridge cycle for muscle.
    Smith DA; Geeves MA
    Biophys J; 1995 Aug; 69(2):524-37. PubMed ID: 8527667
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Backward movements of cross-bridges by application of stretch and by binding of MgADP to skeletal muscle fibers in the rigor state as studied by x-ray diffraction.
    Takezawa Y; Kim DS; Ogino M; Sugimoto Y; Kobayashi T; Arata T; Wakabayashi K
    Biophys J; 1999 Apr; 76(4):1770-83. PubMed ID: 10096877
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Role of Ca2+ and cross-bridges in skeletal muscle thin filament activation probed with Ca2+ sensitizers.
    Wahr PA; Metzger JM
    Biophys J; 1999 Apr; 76(4):2166-76. PubMed ID: 10096910
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct measurement of single synthetic vertebrate thick filament elasticity using nanofabricated cantilevers.
    Dunaway D; Fauver M; Pollack G
    Biophys J; 2002 Jun; 82(6):3128-33. PubMed ID: 12023236
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Muscle sound frequencies of the frog are modulated by skeletal muscle tension.
    Cole NM; Barry DT
    Biophys J; 1994 Apr; 66(4):1104-14. PubMed ID: 8038382
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylation-dependent power output of transgenic flies: an integrated study.
    Dickinson MH; Hyatt CJ; Lehmann FO; Moore JR; Reedy MC; Simcox A; Tohtong R; Vigoreaux JO; Yamashita H; Maughan DW
    Biophys J; 1997 Dec; 73(6):3122-34. PubMed ID: 9414224
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effect of thin filament activation on the attachment of weak binding cross-bridges: A two-dimensional x-ray diffraction study on single muscle fibers.
    Kraft T; Xu S; Brenner B; Yu LC
    Biophys J; 1999 Mar; 76(3):1494-513. PubMed ID: 10049330
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The function of elastic proteins in the oscillatory contraction of insect flight muscle.
    Bullard B; Burkart C; Labeit S; Leonard K
    J Muscle Res Cell Motil; 2005; 26(6-8):479-85. PubMed ID: 16450058
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Viscoelasticity of the sarcomere matrix of skeletal muscles. The titin-myosin composite filament is a dual-stage molecular spring.
    Wang K; McCarter R; Wright J; Beverly J; Ramirez-Mitchell R
    Biophys J; 1993 Apr; 64(4):1161-77. PubMed ID: 8494977
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Tension relaxation after stretch in resting mammalian muscle fibers: stretch activation at physiological temperatures.
    Mutungi G; Ranatunga KW
    Biophys J; 1996 Mar; 70(3):1432-8. PubMed ID: 8785299
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A non-cross-bridge stiffness in activated frog muscle fibers.
    Bagni MA; Cecchi G; Colombini B; Colomo F
    Biophys J; 2002 Jun; 82(6):3118-27. PubMed ID: 12023235
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The basis of differences in thermodynamic efficiency among skeletal muscles.
    Barclay CJ
    Clin Exp Pharmacol Physiol; 2017 Dec; 44(12):1279-1286. PubMed ID: 28892557
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.