BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 8744329)

  • 1. The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions.
    Hendee SP; Faour FA; Christensen DA; Patrick B; Durney CH; Blumenthal DK
    Biophys J; 1996 Jun; 70(6):2915-23. PubMed ID: 8744329
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The effect of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain.
    Coulton LA; Barker AT; Van Lierop JE; Walsh MP
    Bioelectromagnetics; 2000 Apr; 21(3):189-96. PubMed ID: 10723019
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dynamic properties of Lednev's parametric resonance mechanism.
    Engström S
    Bioelectromagnetics; 1996; 17(1):58-70. PubMed ID: 8742757
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Calcium binding to metallochromic dyes and calmodulin in the presence of combined, AC-DC magnetic fields.
    Bruckner-Lea C; Durney CH; Janata J; Rappaport C; Kaminski M
    Bioelectromagnetics; 1992; 13(2):147-62. PubMed ID: 1590813
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Lednev's model: theory and experiment].
    Belova NA; Pancheliuga VA
    Biofizika; 2010; 55(4):750-66. PubMed ID: 20968092
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Influence of Calcium Resonance-Tuned Low-Frequency Magnetic Fields on
    Krylov VV; Papchenkova GA; Golovanova IL
    Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555367
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Lorentz model for weak magnetic field bioeffects: part II--secondary transduction mechanisms and measures of reactivity.
    Muehsam DJ; Pilla AA
    Bioelectromagnetics; 2009 Sep; 30(6):476-88. PubMed ID: 19437458
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Calcium efflux of plasma membrane vesicles exposed to ELF magnetic fields--test of a nuclear magnetic resonance interaction model.
    Sun WJ; Mogadam MK; Sommarin M; Nittby H; Salford LG; Persson BR; Eberhardt JL
    Bioelectromagnetics; 2012 Oct; 33(7):535-42. PubMed ID: 22487968
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte.
    Yost MG; Liburdy RP
    FEBS Lett; 1992 Jan; 296(2):117-22. PubMed ID: 1733766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of combined DC and AC magnetic fields on rat behavior.
    Zhadin MN; Deryugina ON; Pisachenko TM
    Bioelectromagnetics; 1999 Sep; 20(6):378-86. PubMed ID: 10453066
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina.
    Jenrow KA; Smith CH; Liboff AR
    Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Criticism of Lednev's mechanism for the influence of weak magnetic fields on biological systems.
    Adair RK
    Bioelectromagnetics; 1992; 13(3):231-5. PubMed ID: 1590822
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A signal transduction pathway model prototype II: Application to Ca2+-calmodulin signaling and myosin light chain phosphorylation.
    Lukas TJ
    Biophys J; 2004 Sep; 87(3):1417-25. PubMed ID: 15345524
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence anisotropy imaging microscopy maps calmodulin binding during cellular contraction and locomotion.
    Gough AH; Taylor DL
    J Cell Biol; 1993 Jun; 121(5):1095-107. PubMed ID: 8501117
    [TBL] [Abstract][Full Text] [Related]  

  • 15. [Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells].
    Huang C; Ye H; Xu J; Liu J; Qu A
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Mar; 17(1):63-5, 94. PubMed ID: 10879196
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterizing the response of calcium signal transducers to generated calcium transients.
    Davis JP; Tikunova SB; Walsh MP; Johnson JD
    Biochemistry; 1999 Mar; 38(13):4235-44. PubMed ID: 10194340
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase.
    Krueger JK; Zhi G; Stull JT; Trewhella J
    Biochemistry; 1998 Oct; 37(40):13997-4004. PubMed ID: 9760234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of extremely low-frequency magnetic fields on L-glutamic acid aqueous solutions at 20, 40, and 60 microT static magnetic fields.
    Alberto D; Busso L; Garfagnini R; Giudici P; Gnesi I; Manta F; Piragino G; Callegaro L; Crotti G
    Electromagn Biol Med; 2008; 27(3):241-53. PubMed ID: 18821200
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Frequency-dependent interference by magnetic fields of nerve growth factor-induced neurite outgrowth in PC-12 cells.
    Blackman CF; Benane SG; House DE
    Bioelectromagnetics; 1995; 16(6):387-95. PubMed ID: 8789070
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Construction of an epitope-tagged calmodulin useful for the analysis of calmodulin-binding proteins: addition of a hemagglutinin epitope does not affect calmodulin-dependent activation of smooth muscle myosin light chain kinase.
    Szymanska G; O'Connor MB; O'Connor CM
    Anal Biochem; 1997 Oct; 252(1):96-105. PubMed ID: 9324946
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.