These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
136 related articles for article (PubMed ID: 8744329)
1. The effects of weak extremely low frequency magnetic fields on calcium/calmodulin interactions. Hendee SP; Faour FA; Christensen DA; Patrick B; Durney CH; Blumenthal DK Biophys J; 1996 Jun; 70(6):2915-23. PubMed ID: 8744329 [TBL] [Abstract][Full Text] [Related]
2. The effect of static magnetic fields on the rate of calcium/calmodulin-dependent phosphorylation of myosin light chain. Coulton LA; Barker AT; Van Lierop JE; Walsh MP Bioelectromagnetics; 2000 Apr; 21(3):189-96. PubMed ID: 10723019 [TBL] [Abstract][Full Text] [Related]
3. Dynamic properties of Lednev's parametric resonance mechanism. Engström S Bioelectromagnetics; 1996; 17(1):58-70. PubMed ID: 8742757 [TBL] [Abstract][Full Text] [Related]
4. Calcium binding to metallochromic dyes and calmodulin in the presence of combined, AC-DC magnetic fields. Bruckner-Lea C; Durney CH; Janata J; Rappaport C; Kaminski M Bioelectromagnetics; 1992; 13(2):147-62. PubMed ID: 1590813 [TBL] [Abstract][Full Text] [Related]
5. [Lednev's model: theory and experiment]. Belova NA; Pancheliuga VA Biofizika; 2010; 55(4):750-66. PubMed ID: 20968092 [TBL] [Abstract][Full Text] [Related]
6. Influence of Calcium Resonance-Tuned Low-Frequency Magnetic Fields on Krylov VV; Papchenkova GA; Golovanova IL Int J Mol Sci; 2022 Dec; 23(24):. PubMed ID: 36555367 [TBL] [Abstract][Full Text] [Related]
7. A Lorentz model for weak magnetic field bioeffects: part II--secondary transduction mechanisms and measures of reactivity. Muehsam DJ; Pilla AA Bioelectromagnetics; 2009 Sep; 30(6):476-88. PubMed ID: 19437458 [TBL] [Abstract][Full Text] [Related]
8. Calcium efflux of plasma membrane vesicles exposed to ELF magnetic fields--test of a nuclear magnetic resonance interaction model. Sun WJ; Mogadam MK; Sommarin M; Nittby H; Salford LG; Persson BR; Eberhardt JL Bioelectromagnetics; 2012 Oct; 33(7):535-42. PubMed ID: 22487968 [TBL] [Abstract][Full Text] [Related]
9. Time-varying and static magnetic fields act in combination to alter calcium signal transduction in the lymphocyte. Yost MG; Liburdy RP FEBS Lett; 1992 Jan; 296(2):117-22. PubMed ID: 1733766 [TBL] [Abstract][Full Text] [Related]
10. Influence of combined DC and AC magnetic fields on rat behavior. Zhadin MN; Deryugina ON; Pisachenko TM Bioelectromagnetics; 1999 Sep; 20(6):378-86. PubMed ID: 10453066 [TBL] [Abstract][Full Text] [Related]
11. Weak extremely-low-frequency magnetic field-induced regeneration anomalies in the planarian Dugesia tigrina. Jenrow KA; Smith CH; Liboff AR Bioelectromagnetics; 1996; 17(6):467-74. PubMed ID: 8986364 [TBL] [Abstract][Full Text] [Related]
12. Criticism of Lednev's mechanism for the influence of weak magnetic fields on biological systems. Adair RK Bioelectromagnetics; 1992; 13(3):231-5. PubMed ID: 1590822 [TBL] [Abstract][Full Text] [Related]
13. A signal transduction pathway model prototype II: Application to Ca2+-calmodulin signaling and myosin light chain phosphorylation. Lukas TJ Biophys J; 2004 Sep; 87(3):1417-25. PubMed ID: 15345524 [TBL] [Abstract][Full Text] [Related]
14. Fluorescence anisotropy imaging microscopy maps calmodulin binding during cellular contraction and locomotion. Gough AH; Taylor DL J Cell Biol; 1993 Jun; 121(5):1095-107. PubMed ID: 8501117 [TBL] [Abstract][Full Text] [Related]
15. [Effects of extremely low frequency weak magnetic fields on the intracellular free calcium concentration in PC-12 tumor cells]. Huang C; Ye H; Xu J; Liu J; Qu A Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2000 Mar; 17(1):63-5, 94. PubMed ID: 10879196 [TBL] [Abstract][Full Text] [Related]
16. Characterizing the response of calcium signal transducers to generated calcium transients. Davis JP; Tikunova SB; Walsh MP; Johnson JD Biochemistry; 1999 Mar; 38(13):4235-44. PubMed ID: 10194340 [TBL] [Abstract][Full Text] [Related]
17. Neutron-scattering studies reveal further details of the Ca2+/calmodulin-dependent activation mechanism of myosin light chain kinase. Krueger JK; Zhi G; Stull JT; Trewhella J Biochemistry; 1998 Oct; 37(40):13997-4004. PubMed ID: 9760234 [TBL] [Abstract][Full Text] [Related]
18. Effects of extremely low-frequency magnetic fields on L-glutamic acid aqueous solutions at 20, 40, and 60 microT static magnetic fields. Alberto D; Busso L; Garfagnini R; Giudici P; Gnesi I; Manta F; Piragino G; Callegaro L; Crotti G Electromagn Biol Med; 2008; 27(3):241-53. PubMed ID: 18821200 [TBL] [Abstract][Full Text] [Related]
19. Frequency-dependent interference by magnetic fields of nerve growth factor-induced neurite outgrowth in PC-12 cells. Blackman CF; Benane SG; House DE Bioelectromagnetics; 1995; 16(6):387-95. PubMed ID: 8789070 [TBL] [Abstract][Full Text] [Related]
20. Construction of an epitope-tagged calmodulin useful for the analysis of calmodulin-binding proteins: addition of a hemagglutinin epitope does not affect calmodulin-dependent activation of smooth muscle myosin light chain kinase. Szymanska G; O'Connor MB; O'Connor CM Anal Biochem; 1997 Oct; 252(1):96-105. PubMed ID: 9324946 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]