These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8744568)

  • 1. Neural networks as a tool for compact representation of ab initio molecular potential energy surfaces.
    Tafeit E; Estelberger W; Horejsi R; Moeller R; Oettl K; Vrecko K; Reibnegger G
    J Mol Graph; 1996 Feb; 14(1):12-8. PubMed ID: 8744568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational investigation of the cofactor (6R,1'R,2'S-)-5,6,7,8-tetrahydrobiopterin.
    Estelberger W; Fuchs D; Murr C; Wachter H; Reibnegger G
    Biochim Biophys Acta; 1995 May; 1249(1):23-8. PubMed ID: 7766680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The conformational flexibility of 5,6,7,8-tetrahydrobiopterin and 5,6,7,8-tetrahydroneopterin: a molecular dynamical simulation.
    Estelberger W; Mlekusch W; Reibnegger G
    FEBS Lett; 1995 Jan; 357(1):37-40. PubMed ID: 8001674
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Proceedings of the Second Workshop on Theory meets Industry (Erwin-Schrödinger-Institute (ESI), Vienna, Austria, 12-14 June 2007).
    Hafner J
    J Phys Condens Matter; 2008 Feb; 20(6):060301. PubMed ID: 21693862
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Multiscale Quantum Mechanics/Molecular Mechanics Simulations with Neural Networks.
    Shen L; Wu J; Yang W
    J Chem Theory Comput; 2016 Oct; 12(10):4934-4946. PubMed ID: 27552235
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic Spectral Methods for Ab Initio Molecular Electronic Energy Surfaces: Transitioning From Small-Molecule to Biomolecular-Suitable Approaches.
    Mills JD; Ben-Nun M; Rollin K; Bromley MW; Li J; Hinde RJ; Winstead CL; Sheehy JA; Boatz JA; Langhoff PW
    J Phys Chem B; 2016 Aug; 120(33):8321-37. PubMed ID: 27232159
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Potential energy surfaces fitted by artificial neural networks.
    Handley CM; Popelier PL
    J Phys Chem A; 2010 Mar; 114(10):3371-83. PubMed ID: 20131763
    [TBL] [Abstract][Full Text] [Related]  

  • 8. PhysNet: A Neural Network for Predicting Energies, Forces, Dipole Moments, and Partial Charges.
    Unke OT; Meuwly M
    J Chem Theory Comput; 2019 Jun; 15(6):3678-3693. PubMed ID: 31042390
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Prediction of inhibitor binding free energies by quantum neural networks. Nucleoside analogues binding to trypanosomal nucleoside hydrolase.
    Braunheim BB; Miles RW; Schramm VL; Schwartz SD
    Biochemistry; 1999 Dec; 38(49):16076-83. PubMed ID: 10587430
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the construction of diabatic and adiabatic potential energy surfaces based on ab initio valence bond theory.
    Song L; Gao J
    J Phys Chem A; 2008 Dec; 112(50):12925-35. PubMed ID: 18828577
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Toward Predicting Intermetallics Surface Properties with High-Throughput DFT and Convolutional Neural Networks.
    Palizhati A; Zhong W; Tran K; Back S; Ulissi ZW
    J Chem Inf Model; 2019 Nov; 59(11):4742-4749. PubMed ID: 31644279
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reaction path potential for complex systems derived from combined ab initio quantum mechanical and molecular mechanical calculations.
    Lu Z; Yang W
    J Chem Phys; 2004 Jul; 121(1):89-100. PubMed ID: 15260525
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Atom-bond pairwise additive representation for cation-benzene potential energy surfaces: An ab initio validation study.
    Albertí M; Aguilar A; Lucas JM; Pirani F; Cappelletti D; Coletti C; Re N
    J Phys Chem A; 2006 Jul; 110(28):9002-10. PubMed ID: 16836464
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular Dynamics Simulations with Quantum Mechanics/Molecular Mechanics and Adaptive Neural Networks.
    Shen L; Yang W
    J Chem Theory Comput; 2018 Mar; 14(3):1442-1455. PubMed ID: 29438614
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Analytically defined surfaces to analyze molecular interaction properties.
    Gabdoulline RR; Wade RC
    J Mol Graph; 1996 Dec; 14(6):341-53, 374-5. PubMed ID: 9195487
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Free energy perturbation study of water dimer dissociation kinetics.
    Ming Y; Lai G; Tong C; Wood RH; Doren DJ
    J Chem Phys; 2004 Jul; 121(2):773-7. PubMed ID: 15260604
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ab initio ground and excited state potential energy surfaces for NO-Kr complex and dynamics of Kr solids with NO impurity.
    Castro-Palacios JC; Rubayo-Soneira J; Ishii K; Yamashita K
    J Chem Phys; 2007 Apr; 126(13):134315. PubMed ID: 17430040
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probing cofactor specificity in phenylalanine hydroxylase by molecular dynamics simulations.
    Teigen K; Martinez A
    J Biomol Struct Dyn; 2003 Jun; 20(6):733-40. PubMed ID: 12744702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Toolkit for the Construction of Reproducing Kernel-Based Representations of Data: Application to Multidimensional Potential Energy Surfaces.
    Unke OT; Meuwly M
    J Chem Inf Model; 2017 Aug; 57(8):1923-1931. PubMed ID: 28666387
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics investigations of ozone on an ab initio potential energy surface with the utilization of pattern-recognition neural network for accurate determination of product formation.
    Le HM; Dinh TS; Le HV
    J Phys Chem A; 2011 Oct; 115(40):10862-70. PubMed ID: 21888438
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.