These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
245 related articles for article (PubMed ID: 8744950)
1. Different subcellular localization of Saccharomyces cerevisiae HMG-CoA reductase isozymes at elevated levels corresponds to distinct endoplasmic reticulum membrane proliferations. Koning AJ; Roberts CJ; Wright RL Mol Biol Cell; 1996 May; 7(5):769-89. PubMed ID: 8744950 [TBL] [Abstract][Full Text] [Related]
2. Mutational analysis of the karmellae-inducing signal in Hmg1p, a yeast HMG-CoA reductase isozyme. Profant DA; Roberts CJ; Wright RL Yeast; 2000 Jun; 16(9):811-27. PubMed ID: 10861905 [TBL] [Abstract][Full Text] [Related]
3. Identification of the sequences in HMG-CoA reductase required for karmellae assembly. Parrish ML; Sengstag C; Rine JD; Wright RL Mol Biol Cell; 1995 Nov; 6(11):1535-47. PubMed ID: 8589454 [TBL] [Abstract][Full Text] [Related]
4. Regulated degradation of HMG-CoA reductase, an integral membrane protein of the endoplasmic reticulum, in yeast. Hampton RY; Rine J J Cell Biol; 1994 Apr; 125(2):299-312. PubMed ID: 8163547 [TBL] [Abstract][Full Text] [Related]
5. Sequence determinants for regulated degradation of yeast 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Gardner R; Cronin S; Leader B; Rine J; Hampton R Mol Biol Cell; 1998 Sep; 9(9):2611-26. PubMed ID: 9725915 [TBL] [Abstract][Full Text] [Related]
6. Genetic and structural analysis of Hmg2p-induced endoplasmic reticulum remodeling in Saccharomyces cerevisiae. Federovitch CM; Jones YZ; Tong AH; Boone C; Prinz WA; Hampton RY Mol Biol Cell; 2008 Oct; 19(10):4506-20. PubMed ID: 18667535 [TBL] [Abstract][Full Text] [Related]
7. The role of the 3-hydroxy 3-methylglutaryl coenzyme A reductase cytosolic domain in karmellae biogenesis. Profant DA; Roberts CJ; Koning AJ; Wright RL Mol Biol Cell; 1999 Oct; 10(10):3409-23. PubMed ID: 10512876 [TBL] [Abstract][Full Text] [Related]
8. Structural control of endoplasmic reticulum-associated degradation: effect of chemical chaperones on 3-hydroxy-3-methylglutaryl-CoA reductase. Shearer AG; Hampton RY J Biol Chem; 2004 Jan; 279(1):188-96. PubMed ID: 14570925 [TBL] [Abstract][Full Text] [Related]
9. Increased amounts of HMG-CoA reductase induce "karmellae": a proliferation of stacked membrane pairs surrounding the yeast nucleus. Wright R; Basson M; D'Ari L; Rine J J Cell Biol; 1988 Jul; 107(1):101-14. PubMed ID: 3292536 [TBL] [Abstract][Full Text] [Related]
10. Geranylgeranyl pyrophosphate is a potent regulator of HRD-dependent 3-Hydroxy-3-methylglutaryl-CoA reductase degradation in yeast. Garza RM; Tran PN; Hampton RY J Biol Chem; 2009 Dec; 284(51):35368-80. PubMed ID: 19776008 [TBL] [Abstract][Full Text] [Related]
11. Mutations that affect vacuole biogenesis inhibit proliferation of the endoplasmic reticulum in Saccharomyces cerevisiae. Koning AJ; Larson LL; Cadera EJ; Parrish ML; Wright RL Genetics; 2002 Apr; 160(4):1335-52. PubMed ID: 11973291 [TBL] [Abstract][Full Text] [Related]
12. Ubiquitin-mediated regulation of 3-hydroxy-3-methylglutaryl-CoA reductase. Hampton RY; Bhakta H Proc Natl Acad Sci U S A; 1997 Nov; 94(24):12944-8. PubMed ID: 9371780 [TBL] [Abstract][Full Text] [Related]
13. Degradation of 3-hydroxy-3-methylglutaryl-CoA reductase in endoplasmic reticulum membranes is accelerated as a result of increased susceptibility to proteolysis. McGee TP; Cheng HH; Kumagai H; Omura S; Simoni RD J Biol Chem; 1996 Oct; 271(41):25630-8. PubMed ID: 8810339 [TBL] [Abstract][Full Text] [Related]
14. Lovastatin, an inhibitor of cholesterol synthesis, induces hydroxymethylglutaryl-coenzyme A reductase directly on membranes of expanded smooth endoplasmic reticulum in rat hepatocytes. Singer II; Scott S; Kazazis DM; Huff JW Proc Natl Acad Sci U S A; 1988 Jul; 85(14):5264-8. PubMed ID: 3293052 [TBL] [Abstract][Full Text] [Related]
15. Degradation of HMG-CoA reductase-induced membranes in the fission yeast, Schizosaccharomyces pombe. Lum PY; Wright R J Cell Biol; 1995 Oct; 131(1):81-94. PubMed ID: 7559789 [TBL] [Abstract][Full Text] [Related]
16. Role of 26S proteasome and HRD genes in the degradation of 3-hydroxy-3-methylglutaryl-CoA reductase, an integral endoplasmic reticulum membrane protein. Hampton RY; Gardner RG; Rine J Mol Biol Cell; 1996 Dec; 7(12):2029-44. PubMed ID: 8970163 [TBL] [Abstract][Full Text] [Related]
17. 3-hydroxy-3-methylglutaryl coenzyme A reductase is sterol-dependently cleaved by cathepsin L-type cysteine protease in the isolated endoplasmic reticulum. Moriyama T; Wada M; Urade R; Kito M; Katunuma N; Ogawa T; Simoni RD Arch Biochem Biophys; 2001 Feb; 386(2):205-12. PubMed ID: 11368343 [TBL] [Abstract][Full Text] [Related]
18. Feedback regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Saccharomyces cerevisiae. Dimster-Denk D; Thorsness MK; Rine J Mol Biol Cell; 1994 Jun; 5(6):655-65. PubMed ID: 7949422 [TBL] [Abstract][Full Text] [Related]
19. In vitro analysis of Hrd1p-mediated retrotranslocation of its multispanning membrane substrate 3-hydroxy-3-methylglutaryl (HMG)-CoA reductase. Garza RM; Sato BK; Hampton RY J Biol Chem; 2009 May; 284(22):14710-22. PubMed ID: 19324879 [TBL] [Abstract][Full Text] [Related]
20. Genetic and biochemical evaluation of eucaryotic membrane protein topology: multiple transmembrane domains of Saccharomyces cerevisiae 3-hydroxy-3-methylglutaryl coenzyme A reductase. Sengstag C; Stirling C; Schekman R; Rine J Mol Cell Biol; 1990 Feb; 10(2):672-80. PubMed ID: 2405252 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]