These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 8745404)

  • 1. Yeast heat shock transcription factor N-terminal activation domains are unstructured as probed by heteronuclear NMR spectroscopy.
    Cho HS; Liu CW; Damberger FF; Pelton JG; Nelson HC; Wemmer DE
    Protein Sci; 1996 Feb; 5(2):262-9. PubMed ID: 8745404
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Solution structure of the DNA-binding domain of the heat shock transcription factor determined by multidimensional heteronuclear magnetic resonance spectroscopy.
    Damberger FF; Pelton JG; Harrison CJ; Nelson HC; Wemmer DE
    Protein Sci; 1994 Oct; 3(10):1806-21. PubMed ID: 7849597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The DNA-binding domain of yeast heat shock transcription factor independently regulates both the N- and C-terminal activation domains.
    Bulman AL; Hubl ST; Nelson HC
    J Biol Chem; 2001 Oct; 276(43):40254-62. PubMed ID: 11509572
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A disorder-to-order transition coupled to DNA binding in the essential zinc-finger DNA-binding domain of yeast ADR1.
    Hyre DE; Klevit RE
    J Mol Biol; 1998 Jun; 279(4):929-43. PubMed ID: 9642072
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The wing in yeast heat shock transcription factor (HSF) DNA-binding domain is required for full activity.
    Cicero MP; Hubl ST; Harrison CJ; Littlefield O; Hardy JA; Nelson HC
    Nucleic Acids Res; 2001 Apr; 29(8):1715-23. PubMed ID: 11292844
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Yeast heat shock transcription factor contains a flexible linker between the DNA-binding and trimerization domains. Implications for DNA binding by trimeric proteins.
    Flick KE; Gonzalez L; Harrison CJ; Nelson HC
    J Biol Chem; 1994 Apr; 269(17):12475-81. PubMed ID: 8175654
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Role of trehalose and heat in the structure of the C-terminal activation domain of the heat shock transcription factor.
    Bulman AL; Nelson HC
    Proteins; 2005 Mar; 58(4):826-35. PubMed ID: 15651035
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Refined solution structure and dynamics of the DNA-binding domain of the heat shock factor from Kluyveromyces lactis.
    Damberger FF; Pelton JG; Liu C; Cho H; Harrison CJ; Nelson HC; Wemmer DE
    J Mol Biol; 1995 Dec; 254(4):704-19. PubMed ID: 7500344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Internal mobility in the partially folded DNA binding and dimerization domains of GAL4: NMR analysis of the N-H spectral density functions.
    Lefevre JF; Dayie KT; Peng JW; Wagner G
    Biochemistry; 1996 Feb; 35(8):2674-86. PubMed ID: 8611573
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mutational analysis of the DNA-binding domain of yeast heat shock transcription factor.
    Hubl ST; Owens JC; Nelson HC
    Nat Struct Biol; 1994 Sep; 1(9):615-20. PubMed ID: 7634101
    [TBL] [Abstract][Full Text] [Related]  

  • 11. UME6, a negative regulator of meiosis in Saccharomyces cerevisiae, contains a C-terminal Zn2Cys6 binuclear cluster that binds the URS1 DNA sequence in a zinc-dependent manner.
    Anderson SF; Steber CM; Esposito RE; Coleman JE
    Protein Sci; 1995 Sep; 4(9):1832-43. PubMed ID: 8528081
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new use for the 'wing' of the 'winged' helix-turn-helix motif in the HSF-DNA cocrystal.
    Littlefield O; Nelson HC
    Nat Struct Biol; 1999 May; 6(5):464-70. PubMed ID: 10331875
    [TBL] [Abstract][Full Text] [Related]  

  • 13. NMR evidence for similarities between the DNA-binding regions of Drosophila melanogaster heat shock factor and the helix-turn-helix and HNF-3/forkhead families of transcription factors.
    Vuister GW; Kim SJ; Wu C; Bax A
    Biochemistry; 1994 Jan; 33(1):10-6. PubMed ID: 8286326
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The C-terminal hydrophobic repeat of Schizosaccharomyces pombe heat shock factor is not required for heat-induced DNA-binding.
    Saltsman KA; Prentice HL; Kingston RE
    Yeast; 1998 Jun; 14(8):733-46. PubMed ID: 9675818
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Constitutive binding of yeast heat shock factor to DNA in vivo.
    Jakobsen BK; Pelham HR
    Mol Cell Biol; 1988 Nov; 8(11):5040-2. PubMed ID: 3062378
    [TBL] [Abstract][Full Text] [Related]  

  • 16. 1H, 15N resonance assignment and three-dimensional structure of CYP1 (HAP1) DNA-binding domain.
    Timmerman J; Vuidepot AL; Bontems F; Lallemand JY; Gervais M; Shechter E; Guiard B
    J Mol Biol; 1996 Jun; 259(4):792-804. PubMed ID: 8683583
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dynamic association of transcriptional activation domains and regulatory regions in Saccharomyces cerevisiae heat shock factor.
    Chen T; Parker CS
    Proc Natl Acad Sci U S A; 2002 Feb; 99(3):1200-5. PubMed ID: 11818569
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of DNA binding and metal substitution on the dynamics of the GAL4 DNA-binding domain as studied by amide proton exchange.
    Mau T; Baleja JD; Wagner G
    Protein Sci; 1992 Nov; 1(11):1403-12. PubMed ID: 1303761
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Temperature dependence of intramolecular dynamics of the basic leucine zipper of GCN4: implications for the entropy of association with DNA.
    Bracken C; Carr PA; Cavanagh J; Palmer AG
    J Mol Biol; 1999 Feb; 285(5):2133-46. PubMed ID: 9925790
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Kluyveromyces marxianus as a source of yeast autolysates.
    Lukondeh T; Ashbolt NJ; Rogers PL
    J Ind Microbiol Biotechnol; 2003 Jan; 30(1):52-6. PubMed ID: 12545387
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.