These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 8745404)

  • 21. Role of an alpha-helical bulge in the yeast heat shock transcription factor.
    Hardy JA; Walsh ST; Nelson HC
    J Mol Biol; 2000 Jan; 295(3):393-409. PubMed ID: 10623534
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Secondary structure of the homeo domain of yeast alpha 2 repressor determined by NMR spectroscopy.
    Phillips CL; Vershon AK; Johnson AD; Dahlquist FW
    Genes Dev; 1991 May; 5(5):764-72. PubMed ID: 1673952
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structures of DNA-binding mutant zinc finger domains: implications for DNA binding.
    Hoffman RC; Horvath SJ; Klevit RE
    Protein Sci; 1993 Jun; 2(6):951-65. PubMed ID: 8318900
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Solution structure of the Kluyveromyces lactis LAC9 Cd2 Cys6 DNA-binding domain.
    Gardner KH; Anderson SF; Coleman JE
    Nat Struct Biol; 1995 Oct; 2(10):898-905. PubMed ID: 7552715
    [TBL] [Abstract][Full Text] [Related]  

  • 25. NMR structure of the J-domain and the Gly/Phe-rich region of the Escherichia coli DnaJ chaperone.
    Pellecchia M; Szyperski T; Wall D; Georgopoulos C; Wüthrich K
    J Mol Biol; 1996 Jul; 260(2):236-50. PubMed ID: 8764403
    [TBL] [Abstract][Full Text] [Related]  

  • 26. 1H and 15N assignment of NMR spectrum, secondary structure and global folding of the immunophilin-like domain of the 59-kDa FK506-binding protein.
    Rouvière-Fourmy N; Craescu CT; Mispelter J; Lebeau MC; Baulieu EE
    Eur J Biochem; 1995 Aug; 231(3):761-72. PubMed ID: 7544285
    [TBL] [Abstract][Full Text] [Related]  

  • 27. How does the GAL4 transcription factor recognize the appropriate DNA binding sites in vivo?
    Kodadek T
    Cell Mol Biol Res; 1993; 39(4):355-60. PubMed ID: 8312971
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Trimerization of the heat shock transcription factor by a triple-stranded alpha-helical coiled-coil.
    Peteranderl R; Nelson HC
    Biochemistry; 1992 Dec; 31(48):12272-6. PubMed ID: 1457424
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Characterization of a gene similar to BIK1 in the yeast Kluyveromyces lactis.
    Lamas-Maceiras M; Cerdán ME; Lloret A; Freire-Picos MA
    Yeast; 2004 Oct; 21(13):1067-75. PubMed ID: 15484289
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A novel domain of the yeast heat shock factor that regulates its activation function.
    Sakurai H; Fukasawa T
    Biochem Biophys Res Commun; 2001 Jul; 285(3):696-701. PubMed ID: 11453649
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Elongin from Saccharomyces cerevisiae.
    Koth CM; Botuyan MV; Moreland RJ; Jansma DB; Conaway JW; Conaway RC; Chazin WJ; Friesen JD; Arrowsmith CH; Edwards AM
    J Biol Chem; 2000 Apr; 275(15):11174-80. PubMed ID: 10753924
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Regulation of glycolysis by casein kinase I (Rag8p) in Kluyveromyces lactis involves a DNA-binding protein, Sck1p, a homologue of Sgc1p of Saccharomyces cerevisiae.
    Lemaire M; Guyon A; Betina S; Wésolowski-Louvel M
    Curr Genet; 2002 Mar; 40(6):355-64. PubMed ID: 11919674
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The HIS4 gene from the yeast Kluyveromyces lactis.
    Freire-Picos MA; Hampsey M; Cerdán ME
    Yeast; 1998 May; 14(7):687-91. PubMed ID: 9639316
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Regulated phosphorylation of the Gal4p inhibitor Gal80p of Kluyveromyces lactis revealed by mutational analysis.
    Zenke FT; Kapp L; Breunig KD
    Biol Chem; 1999 Apr; 380(4):419-30. PubMed ID: 10355628
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solution structure of the DNA-binding domain of Drosophila heat shock transcription factor.
    Vuister GW; Kim SJ; Orosz A; Marquardt J; Wu C; Bax A
    Nat Struct Biol; 1994 Sep; 1(9):605-14. PubMed ID: 7634100
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Folding transition in the DNA-binding domain of GCN4 on specific binding to DNA.
    Weiss MA; Ellenberger T; Wobbe CR; Lee JP; Harrison SC; Struhl K
    Nature; 1990 Oct; 347(6293):575-8. PubMed ID: 2145515
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural insights into Atg10-mediated formation of the autophagy-essential Atg12-Atg5 conjugate.
    Yamaguchi M; Noda NN; Yamamoto H; Shima T; Kumeta H; Kobashigawa Y; Akada R; Ohsumi Y; Inagaki F
    Structure; 2012 Jul; 20(7):1244-54. PubMed ID: 22682742
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Solution structure of the HMG protein NHP6A and its interaction with DNA reveals the structural determinants for non-sequence-specific binding.
    Allain FH; Yen YM; Masse JE; Schultze P; Dieckmann T; Johnson RC; Feigon J
    EMBO J; 1999 May; 18(9):2563-79. PubMed ID: 10228169
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Kluyveromyces lactis SSO1 and SEB1 genes are functional in Saccharomyces cerevisiae and enhance production of secreted proteins when overexpressed.
    Toikkanen JH; Sundqvist L; Keränen S
    Yeast; 2004 Sep; 21(12):1045-55. PubMed ID: 15449305
    [TBL] [Abstract][Full Text] [Related]  

  • 40. NMR structure of the N-terminal domain of Saccharomyces cerevisiae RNase HI reveals a fold with a strong resemblance to the N-terminal domain of ribosomal protein L9.
    Evans SP; Bycroft M
    J Mol Biol; 1999 Aug; 291(3):661-9. PubMed ID: 10448044
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.