BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 8745410)

  • 1. Reconstitution of active octameric mitochondrial creatine kinase from two genetically engineered fragments.
    Gross M; Wyss M; Furter-Graves EM; Wallimann T; Furter R
    Protein Sci; 1996 Feb; 5(2):320-30. PubMed ID: 8745410
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Membrane-binding and lipid vesicle cross-linking kinetics of the mitochondrial creatine kinase octamer.
    Stachowiak O; Dolder M; Wallimann T
    Biochemistry; 1996 Dec; 35(48):15522-8. PubMed ID: 8952506
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The role of Arg-96 in Danio rerio creatine kinase in substrate recognition and active center configuration.
    Uda K; Kuwasaki A; Shima K; Matsumoto T; Suzuki T
    Int J Biol Macromol; 2009 Jun; 44(5):413-8. PubMed ID: 19428475
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant human cytomegalovirus protease with a C-terminal (His)6 extension: purification, autocatalytic release of the mature enzyme, and biochemical characterization.
    Tomasselli AG; Paddock DJ; Curry KA; Garlick RL; Leone JW; Lull JM; Mutchler VT; Baker CA; Cavey GS; Mathews WR; Shelly JA; Finzel BC; Baldwin ET; Wells PA; Tomich CS
    Protein Expr Purif; 1998 Dec; 14(3):343-52. PubMed ID: 9882568
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning and expression of mitochondrial and protoflagellar creatine kinases from a marine sponge: implications for the origin of intracellular energy transport systems.
    Sona S; Suzuki T; Ellington WR
    Biochem Biophys Res Commun; 2004 May; 317(4):1207-14. PubMed ID: 15094398
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of brain-type creatine kinase at 1.41 A resolution.
    Eder M; Schlattner U; Becker A; Wallimann T; Kabsch W; Fritz-Wolf K
    Protein Sci; 1999 Nov; 8(11):2258-69. PubMed ID: 10595529
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin and properties of cytoplasmic and mitochondrial isoforms of taurocyamine kinase.
    Uda K; Saishoji N; Ichinari S; Ellington WR; Suzuki T
    FEBS J; 2005 Jul; 272(14):3521-30. PubMed ID: 16008553
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation, characterization, and cDNA-derived amino acid sequence of glycocyamine kinase from the tropical marine worm Namalycastis sp.
    Mizuta C; Tanaka K; Suzuki T
    Comp Biochem Physiol B Biochem Mol Biol; 2005 Mar; 140(3):387-93. PubMed ID: 15694586
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The tryptophan residues of mitochondrial creatine kinase: roles of Trp-223, Trp-206, and Trp-264 in active-site and quaternary structure formation.
    Gross M; Furter-Graves EM; Wallimann T; Eppenberger HM; Furter R
    Protein Sci; 1994 Jul; 3(7):1058-68. PubMed ID: 7920251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Contributions to catalysis and potential interactions of the three catalytic domains in a contiguous trimeric creatine kinase.
    Hoffman GG; Davulcu O; Sona S; Ellington WR
    FEBS J; 2008 Feb; 275(4):646-54. PubMed ID: 18190534
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Towards creatine kinase aggregation due to the cysteine modification at the flexible active site and refolding pathway.
    Mu H; Zhou SM; Yang JM; Meng FG; Park YD
    Int J Biol Macromol; 2007 Oct; 41(4):439-46. PubMed ID: 17673285
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Functional role of the N-terminal region of the Lon protease from Mycobacterium smegmatis.
    Roudiak SG; Shrader TE
    Biochemistry; 1998 Aug; 37(32):11255-63. PubMed ID: 9698372
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of a kallikrein-like protease from the snake venom: engineering of autocatalytic site in the fusion protein to facilitate protein refolding.
    Hung CC; Chiou SH
    Biochem Biophys Res Commun; 2000 Sep; 275(3):924-30. PubMed ID: 10973823
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of the ATP binding site of Escherichia coli aminoimidazole ribonucleotide synthetase using affinity labeling and site-directed mutagenesis.
    Mueller EJ; Oh S; Kavalerchik E; Kappock TJ; Meyer E; Li C; Ealick SE; Stubbe J
    Biochemistry; 1999 Aug; 38(31):9831-9. PubMed ID: 10433689
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of kinetic constants of creatine kinase isoforms.
    Matsushima K; Uda K; Ishida K; Kokufuta C; Iwasaki N; Suzuki T
    Int J Biol Macromol; 2006 Mar; 38(2):83-8. PubMed ID: 16451808
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Expression of active octameric chicken cardiac mitochondrial creatine kinase in Escherichia coli.
    Furter R; Kaldis P; Furter-Graves EM; Schnyder T; Eppenberger HM; Wallimann T
    Biochem J; 1992 Dec; 288 ( Pt 3)(Pt 3):771-5. PubMed ID: 1471992
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure of mitochondrial creatine kinase.
    Fritz-Wolf K; Schnyder T; Wallimann T; Kabsch W
    Nature; 1996 May; 381(6580):341-5. PubMed ID: 8692275
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Isoleucine 69 and valine 325 form a specificity pocket in human muscle creatine kinase.
    Novak WR; Wang PF; McLeish MJ; Kenyon GL; Babbitt PC
    Biochemistry; 2004 Nov; 43(43):13766-74. PubMed ID: 15504039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Role of amino-acid residue 95 in substrate specificity of phosphagen kinases.
    Tanaka K; Suzuki T
    FEBS Lett; 2004 Aug; 573(1-3):78-82. PubMed ID: 15327979
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Identification of Arg-12 in the active site of Escherichia coli K1 CMP-sialic acid synthetase.
    Stoughton DM; Zapata G; Picone R; Vann WF
    Biochem J; 1999 Oct; 343 Pt 2(Pt 2):397-402. PubMed ID: 10510306
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.