BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 8745634)

  • 21. Elements essential for accumulation and function of small nucleolar RNAs directing site-specific pseudouridylation of ribosomal RNAs.
    Bortolin ML; Ganot P; Kiss T
    EMBO J; 1999 Jan; 18(2):457-69. PubMed ID: 9889201
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Sculpting of the spliceosomal branch site recognition motif by a conserved pseudouridine.
    Newby MI; Greenbaum NL
    Nat Struct Biol; 2002 Dec; 9(12):958-65. PubMed ID: 12426583
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Position-dependent function of a B block promoter element implies a specialized chromatin structure on the S.cerevisiae U6 RNA gene, SNR6.
    Kaiser MW; Chi J; Brow DA
    Nucleic Acids Res; 2004; 32(14):4297-305. PubMed ID: 15304565
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Esf2p, a U3-associated factor required for small-subunit processome assembly and compaction.
    Hoang T; Peng WT; Vanrobays E; Krogan N; Hiley S; Beyer AL; Osheim YN; Greenblatt J; Hughes TR; Lafontaine DL
    Mol Cell Biol; 2005 Jul; 25(13):5523-34. PubMed ID: 15964808
    [TBL] [Abstract][Full Text] [Related]  

  • 25. The structure of an essential splicing element: stem loop IIa from yeast U2 snRNA.
    Stallings SC; Moore PB
    Structure; 1997 Sep; 5(9):1173-85. PubMed ID: 9331416
    [TBL] [Abstract][Full Text] [Related]  

  • 26. In humans all U3 genes map to chromosome 17p12-->p11, but in mouse the U3A and U3B genes are located on different chromosomes.
    Mazan S; Mattéi MG; Roeckel N; Qu LH; Bachellerie JP
    Cytogenet Cell Genet; 1993; 62(4):203-6. PubMed ID: 8440138
    [TBL] [Abstract][Full Text] [Related]  

  • 27. An essential domain in Saccharomyces cerevisiae U14 snoRNA is absent in vertebrates, but conserved in other yeasts.
    Samarsky DA; Schneider GS; Fournier MJ
    Nucleic Acids Res; 1996 Jun; 24(11):2059-66. PubMed ID: 8668536
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Molecular characterization of U3 small nucleolar RNA from the early diverging protist, Euglena gracilis.
    Greenwood SJ; Schnare MN; Gray MW
    Curr Genet; 1996 Sep; 30(4):338-46. PubMed ID: 8781178
    [TBL] [Abstract][Full Text] [Related]  

  • 29. U24, a novel intron-encoded small nucleolar RNA with two 12 nt long, phylogenetically conserved complementarities to 28S rRNA.
    Qu LH; Henry Y; Nicoloso M; Michot B; Azum MC; Renalier MH; Caizergues-Ferrer M; Bachellerie JP
    Nucleic Acids Res; 1995 Jul; 23(14):2669-76. PubMed ID: 7651828
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Effect of artificially inserted intron on gene expression in Saccharomyces cerevisiae.
    Yoshimatsu T; Nagawa F
    DNA Cell Biol; 1994 Jan; 13(1):51-8. PubMed ID: 8286039
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RNA structural patterns and splicing: molecular basis for an RNA-based enhancer.
    Libri D; Stutz F; McCarthy T; Rosbash M
    RNA; 1995 Jun; 1(4):425-36. PubMed ID: 7493320
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Identification of a novel element required for processing of intron-encoded box C/D small nucleolar RNAs in Saccharomyces cerevisiae.
    Villa T; Ceradini F; Bozzoni I
    Mol Cell Biol; 2000 Feb; 20(4):1311-20. PubMed ID: 10648617
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Functional mapping of the U3 small nucleolar RNA from the yeast Saccharomyces cerevisiae.
    Samarsky DA; Fournier MJ
    Mol Cell Biol; 1998 Jun; 18(6):3431-44. PubMed ID: 9584183
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Different forms of U15 snoRNA are encoded in the introns of the ribosomal protein S1 gene of Xenopus laevis.
    Pellizzoni L; Crosio C; Campioni N; Loreni F; Pierandrei-Amaldi P
    Nucleic Acids Res; 1994 Nov; 22(22):4607-13. PubMed ID: 7984408
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Evolution of small nuclear RNAs in S. cerevisiae, C. albicans, and other hemiascomycetous yeasts.
    Mitrovich QM; Guthrie C
    RNA; 2007 Dec; 13(12):2066-80. PubMed ID: 17956975
    [TBL] [Abstract][Full Text] [Related]  

  • 36. An experimental study of Saccharomyces cerevisiae U3 snRNA conformation in solution.
    Ségault V; Mougin A; Grégoire A; Banroques J; Branlant C
    Nucleic Acids Res; 1992 Jul; 20(13):3443-51. PubMed ID: 1630915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Split tRNA genes and their products: a paradigm for the study of cell function and evolution.
    Culbertson MR; Winey M
    Yeast; 1989; 5(6):405-27. PubMed ID: 2694676
    [No Abstract]   [Full Text] [Related]  

  • 38. Impairment of yeast pre-mRNA splicing by potential secondary structure-forming sequences near the conserved branchpoint sequence.
    Halfter H; Gallwitz D
    Nucleic Acids Res; 1988 Nov; 16(22):10413-23. PubMed ID: 2905037
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Sequence of the mitochondrial gene encoding subunit I of cytochrome oxidase in Saccharomyces douglasii.
    Tian GL; Michel F; Macadre C; Lazowska J
    Gene; 1993 Feb; 124(2):153-63. PubMed ID: 8383070
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An intronic RNA structure modulates expression of the mRNA biogenesis factor Sus1.
    AbuQattam A; Gallego J; Rodríguez-Navarro S
    RNA; 2016 Jan; 22(1):75-86. PubMed ID: 26546116
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.