These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
177 related articles for article (PubMed ID: 8746376)
1. The performance of a variable-flow indirect calorimeter. Nicholson MJ; Holton J; Bradley AP; Beatty PC; Campbell IT Physiol Meas; 1996 Feb; 17(1):43-55. PubMed ID: 8746376 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the accuracy and precision of a new generation indirect calorimeter in canopy dilution mode. Delsoglio M; Dupertuis YM; Oshima T; van der Plas M; Pichard C Clin Nutr; 2020 Jun; 39(6):1927-1934. PubMed ID: 31543335 [TBL] [Abstract][Full Text] [Related]
3. A Comparison of Carbon Dioxide Elimination Measurements Between a Portable Indirect Calorimeter and Volumetric Capnography Monitor: An In Vitro Simulation. Smallwood CD; Martinez EE; Mehta NM Respir Care; 2016 Mar; 61(3):354-8. PubMed ID: 26715770 [TBL] [Abstract][Full Text] [Related]
4. Validation of an indirect calorimeter using n-of-1 methodology. Frankenfield DC; Ashcraft CM; Wood C; Chinchilli VM Clin Nutr; 2016 Feb; 35(1):163-168. PubMed ID: 25707909 [TBL] [Abstract][Full Text] [Related]
5. Validity and reliability of a new portable telemetric calorimeter designed to measure oxygen consumption and carbon dioxide production. De Lorenzo A; Sorge RP; Bertini I; Andreoli A; lacopino L; Di Daniele N; Perriello G Diabetes Nutr Metab; 2001 Oct; 14(5):268-76. PubMed ID: 11806467 [TBL] [Abstract][Full Text] [Related]
6. A water-sealed indirect calorimeter for measurement of oxygen consumption (VO2), carbon dioxide production (VCO2), and energy expenditure in infants. Dechert RE; Wesley JR; Schafer LE; LaMond S; Nicks J; Coran AG; Bartlett RH JPEN J Parenter Enteral Nutr; 1988; 12(3):256-9. PubMed ID: 3134559 [TBL] [Abstract][Full Text] [Related]
7. Precision and accuracy in a metabolic monitor for indirect calorimetry. Wells JC; Fuller NJ Eur J Clin Nutr; 1998 Jul; 52(7):536-40. PubMed ID: 9683338 [TBL] [Abstract][Full Text] [Related]
8. Technical and clinical testing of a computerized indirect calorimeter for use in mechanically ventilated neonates. Mayfield SR Am J Clin Nutr; 1991 Jul; 54(1):30-4. PubMed ID: 1905477 [TBL] [Abstract][Full Text] [Related]
9. Comparison of face mask, head hood, and canopy for breath sampling in flow-through indirect calorimetry to measure oxygen consumption and carbon dioxide production of preterm infants < 1500 grams. Bauer K; Pasel K; Uhrig C; Sperling P; Versmold H Pediatr Res; 1997 Jan; 41(1):139-44. PubMed ID: 8979303 [TBL] [Abstract][Full Text] [Related]
10. In vitro evaluation of a compact metabolic measurement instrument. Weissman C; Sardar A; Kemper M JPEN J Parenter Enteral Nutr; 1990; 14(2):216-21. PubMed ID: 2112632 [TBL] [Abstract][Full Text] [Related]
11. A whole body transportable indirect calorimeter for human use in the tropics. Charbonnier A; Jones CD; Schutz Y; Murgatroyd PR; Whitehead RG; Jéquier E; Spinnler G Eur J Clin Nutr; 1990 Oct; 44(10):725-31. PubMed ID: 2269251 [TBL] [Abstract][Full Text] [Related]
12. Validation of indirect calorimetry for measurement of energy expenditure in healthy volunteers undergoing pressure controlled non-invasive ventilation support. Siirala W; Noponen T; Olkkola KT; Vuori A; Koivisto M; Hurme S; Aantaa R J Clin Monit Comput; 2012 Feb; 26(1):37-43. PubMed ID: 22207315 [TBL] [Abstract][Full Text] [Related]
13. Continuous breathing circuit flow and tracheal tube cuff leak: sources of error during pediatric indirect calorimetry. Räsänen J Crit Care Med; 1992 Sep; 20(9):1335-40. PubMed ID: 1521450 [TBL] [Abstract][Full Text] [Related]
14. Methods to validate the accuracy of an indirect calorimeter in the in-vitro setting. Oshima T; Ragusa M; Graf S; Dupertuis YM; Heidegger CP; Pichard C Clin Nutr ESPEN; 2017 Dec; 22():71-75. PubMed ID: 29415838 [TBL] [Abstract][Full Text] [Related]
15. Validation of a portable indirect calorimetry system for measurement of energy expenditure in sick preterm infants. Shortland GJ; Fleming PJ; Walter JH Arch Dis Child; 1992 Oct; 67(10 Spec No):1207-11. PubMed ID: 1444562 [TBL] [Abstract][Full Text] [Related]
16. A computer-controlled indirect calorimeter for the measurement of energy expenditure in one or two subjects simultaneously. Garrow JS; Webster JD Hum Nutr Clin Nutr; 1986 Jul; 40(4):315-21. PubMed ID: 3744892 [TBL] [Abstract][Full Text] [Related]
18. In vitro validation of a metabolic monitor for gas exchange measurements in ventilated neonates. Behrends M; Kernbach M; Bräuer A; Braun U; Peters J; Weyland W Intensive Care Med; 2001 Jan; 27(1):228-35. PubMed ID: 11280640 [TBL] [Abstract][Full Text] [Related]
19. A self-correcting indirect calorimeter system for the measurement of energy balance in small animals. Jensen DR; Gayles EC; Ammon S; Phillips R; Eckel RH J Appl Physiol (1985); 2001 Mar; 90(3):912-8. PubMed ID: 11181600 [TBL] [Abstract][Full Text] [Related]
20. Measuring energy expenditure in the intensive care unit: a comparison of indirect calorimetry by E-sCOVX and Quark RMR with Deltatrac II in mechanically ventilated critically ill patients. Rehal MS; Fiskaare E; Tjäder I; Norberg Å; Rooyackers O; Wernerman J Crit Care; 2016 Mar; 20():54. PubMed ID: 26951095 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]