These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 8746397)

  • 1. Power density in theta/alpha frequencies of the waking EEG progressively increases during sustained wakefulness.
    Cajochen C; Brunner DP; Kräuchi K; Graw P; Wirz-Justice A
    Sleep; 1995 Dec; 18(10):890-4. PubMed ID: 8746397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. EEG and subjective sleepiness during extended wakefulness in seasonal affective disorder: circadian and homeostatic influences.
    Cajochen C; Brunner DP; Kräuchi K; Graw P; Wirz-Justice A
    Biol Psychiatry; 2000 Apr; 47(7):610-7. PubMed ID: 10745053
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Circadian acrophases of powers and frequencies in the waking EEG.
    Gundel A; Hilbig A
    Int J Neurosci; 1983 Dec; 22(1-2):125-33. PubMed ID: 6686839
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dynamics of the human EEG during prolonged wakefulness: evidence for frequency-specific circadian and homeostatic influences.
    Aeschbach D; Matthews JR; Postolache TT; Jackson MA; Giesen HA; Wehr TA
    Neurosci Lett; 1997 Dec; 239(2-3):121-4. PubMed ID: 9469671
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Two circadian rhythms in the human electroencephalogram during wakefulness.
    Aeschbach D; Matthews JR; Postolache TT; Jackson MA; Giesen HA; Wehr TA
    Am J Physiol; 1999 Dec; 277(6):R1771-9. PubMed ID: 10600925
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fluctuation of waking electroencephalogram and subjective alertness during a 25-hour sleep-deprivation episode in young and middle-aged subjects.
    Drapeau C; Carrier J
    Sleep; 2004 Feb; 27(1):55-60. PubMed ID: 14998238
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Subjective sleepiness correlates negatively with global alpha (8-12 Hz) and positively with central frontal theta (4-8 Hz) frequencies in the human resting awake electroencephalogram.
    Strijkstra AM; Beersma DG; Drayer B; Halbesma N; Daan S
    Neurosci Lett; 2003 Apr; 340(1):17-20. PubMed ID: 12648748
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interrelations and circadian changes of electroencephalogram frequencies under baseline conditions and constant sleep pressure in the rat.
    Yasenkov R; Deboer T
    Neuroscience; 2011 Apr; 180():212-21. PubMed ID: 21303684
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Evidence from the waking electroencephalogram that short sleepers live under higher homeostatic sleep pressure than long sleepers.
    Aeschbach D; Postolache TT; Sher L; Matthews JR; Jackson MA; Wehr TA
    Neuroscience; 2001; 102(3):493-502. PubMed ID: 11226688
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Theta activity in the waking EEG is a marker of sleep propensity in the rat.
    Vyazovskiy VV; Tobler I
    Brain Res; 2005 Jul; 1050(1-2):64-71. PubMed ID: 15975563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Distinctive effects of modafinil and d-amphetamine on the homeostatic and circadian modulation of the human waking EEG.
    Chapotot F; Pigeau R; Canini F; Bourdon L; Buguet A
    Psychopharmacology (Berl); 2003 Mar; 166(2):127-38. PubMed ID: 12552359
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation of circadian and wake duration-dependent modulation of EEG activation during wakefulness.
    Cajochen C; Wyatt JK; Czeisler CA; Dijk DJ
    Neuroscience; 2002; 114(4):1047-60. PubMed ID: 12379258
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Association between pupillary unrest index and waking electroencephalogram activity in sleep-deprived healthy adults.
    Regen F; Dorn H; Danker-Hopfe H
    Sleep Med; 2013 Sep; 14(9):902-12. PubMed ID: 23770159
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Waking electroencephalogram activity as a consequence of sleep and total sleep deprivation in the rat.
    Ugalde E; Corsi-Cabrera M; Juárez J; Ramos J; Arce C
    Sleep; 1994 Apr; 17(3):226-30. PubMed ID: 7939121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Caffeine attenuates waking and sleep electroencephalographic markers of sleep homeostasis in humans.
    Landolt HP; Rétey JV; Tönz K; Gottselig JM; Khatami R; Buckelmüller I; Achermann P
    Neuropsychopharmacology; 2004 Oct; 29(10):1933-9. PubMed ID: 15257305
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Waking and sleep electroencephalogram variables as human sleep homeostatic process biomarkers after drug administration.
    Giménez S; Romero S; Mañanas MA; Barbanoj MJ
    Neuropsychobiology; 2011; 63(4):252-60. PubMed ID: 21494053
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The circadian and homeostatic modulation of sleep pressure during wakefulness differs between morning and evening chronotypes.
    Taillard J; Philip P; Coste O; Sagaspe P; Bioulac B
    J Sleep Res; 2003 Dec; 12(4):275-82. PubMed ID: 14633238
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Short-wavelength sensitivity for the direct effects of light on alertness, vigilance, and the waking electroencephalogram in humans.
    Lockley SW; Evans EE; Scheer FA; Brainard GC; Czeisler CA; Aeschbach D
    Sleep; 2006 Feb; 29(2):161-8. PubMed ID: 16494083
    [TBL] [Abstract][Full Text] [Related]  

  • 19. EEG topography during sleep inertia upon awakening after a period of increased homeostatic sleep pressure.
    Gorgoni M; Ferrara M; D'Atri A; Lauri G; Scarpelli S; Truglia I; De Gennaro L
    Sleep Med; 2015 Jul; 16(7):883-90. PubMed ID: 26004680
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electroencephalogram power density and slow wave sleep as a function of prior waking and circadian phase.
    Dijk DJ; Brunner DP; Beersma DG; Borbély AA
    Sleep; 1990 Oct; 13(5):430-40. PubMed ID: 2287855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.