These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
264 related articles for article (PubMed ID: 8746446)
1. Improved analysis of malondialdehyde in human body fluids. Jentzsch AM; Bachmann H; Fürst P; Biesalski HK Free Radic Biol Med; 1996; 20(2):251-6. PubMed ID: 8746446 [TBL] [Abstract][Full Text] [Related]
2. Plasma thiobarbituric acid reactivity: reaction conditions and the role of iron, antioxidants and lipid peroxy radicals on the quantitation of plasma lipid peroxides. Wade CR; van Rij AM Life Sci; 1988; 43(13):1085-93. PubMed ID: 3172976 [TBL] [Abstract][Full Text] [Related]
3. Reaction conditions affecting the relationship between thiobarbituric acid reactivity and lipid peroxides in human plasma. Lapenna D; Ciofani G; Pierdomenico SD; Giamberardino MA; Cuccurullo F Free Radic Biol Med; 2001 Aug; 31(3):331-5. PubMed ID: 11461770 [TBL] [Abstract][Full Text] [Related]
4. Butylated hydroxytoluene addition improves the thiobarbituric acid assay for malonaldehyde from chicken plasma fat. Pikul J; Leszczynski DE Nahrung; 1986; 30(7):673-8. PubMed ID: 3773981 [TBL] [Abstract][Full Text] [Related]
5. Lipid peroxidation in hyperlipidaemic patients. A study of plasma using an HPLC-based thiobarbituric acid test. Chirico S; Smith C; Marchant C; Mitchinson MJ; Halliwell B Free Radic Res Commun; 1993; 19(1):51-7. PubMed ID: 8225034 [TBL] [Abstract][Full Text] [Related]
6. Rapid quantification of malondialdehyde in plasma by high performance liquid chromatography-visible detection. Grotto D; Santa Maria LD; Boeira S; Valentini J; Charão MF; Moro AM; Nascimento PC; Pomblum VJ; Garcia SC J Pharm Biomed Anal; 2007 Jan; 43(2):619-24. PubMed ID: 16949242 [TBL] [Abstract][Full Text] [Related]
7. Preparative steps necessary for the accurate measurement of malondialdehyde by high-performance liquid chromatography. Lepage G; Munoz G; Champagne J; Roy CC Anal Biochem; 1991 Sep; 197(2):277-83. PubMed ID: 1785679 [TBL] [Abstract][Full Text] [Related]
8. Optimized determination of malondialdehyde in plasma lipid extracts using 1,3-diethyl-2-thiobarbituric acid: influence of detection method and relations with lipids and fatty acids in plasma from healthy adults. Hoving EB; Laing C; Rutgers HM; Teggeler M; van Doormaal JJ; Muskiet FA Clin Chim Acta; 1992 Jun; 208(1-2):63-76. PubMed ID: 1638754 [TBL] [Abstract][Full Text] [Related]
9. A specific, accurate, and sensitive measure of total plasma malondialdehyde by HPLC. Moselhy HF; Reid RG; Yousef S; Boyle SP J Lipid Res; 2013 Mar; 54(3):852-858. PubMed ID: 23264677 [TBL] [Abstract][Full Text] [Related]
10. Evaluation of Oxidative Stress in Biological Samples Using the Thiobarbituric Acid Reactive Substances Assay. Aguilar Diaz De Leon J; Borges CR J Vis Exp; 2020 May; (159):. PubMed ID: 32478759 [TBL] [Abstract][Full Text] [Related]
11. A novel HPLC method for the measurement of thiobarbituric acid reactive substances (TBARS). A comparison with a commercially available kit. Seljeskog E; Hervig T; Mansoor MA Clin Biochem; 2006 Sep; 39(9):947-54. PubMed ID: 16781699 [TBL] [Abstract][Full Text] [Related]
12. Lipid peroxidation measurement by thiobarbituric acid assay in rat cerebellar slices. Garcia YJ; Rodríguez-Malaver AJ; Peñaloza N J Neurosci Methods; 2005 May; 144(1):127-35. PubMed ID: 15848246 [TBL] [Abstract][Full Text] [Related]
13. Spectrophotometric determination of a thiobarbituric acid-reactive substance in human hair. Sheu JY; Chen PH; Tseng WC; Chen CY; Tsai LY; Huang YL Anal Sci; 2003 Jun; 19(6):957-60. PubMed ID: 12834244 [TBL] [Abstract][Full Text] [Related]
14. Fluorometric analysis of 2-thiobarbituric acid reactive substances in turkey. Jo C; Ahn DU Poult Sci; 1998 Mar; 77(3):475-80. PubMed ID: 9521463 [TBL] [Abstract][Full Text] [Related]
15. The time course of malondialdehyde production following impact injury to rat spinal cord as measured by microdialysis and high pressure liquid chromatography. Qian H; Liu D Neurochem Res; 1997 Oct; 22(10):1231-6. PubMed ID: 9342727 [TBL] [Abstract][Full Text] [Related]
16. Interactions of nitric oxide with lipid peroxidation products under aerobic conditions: inhibitory effects on the formation of malondialdehyde and related thiobarbituric acid-reactive substances. d'Ischia M; Palumbo A; Buzzo F Nitric Oxide; 2000 Feb; 4(1):4-14. PubMed ID: 10733868 [TBL] [Abstract][Full Text] [Related]
17. Preventing in vitro lipoperoxidation in the malondialdehyde-thiobarbituric assay. Gonzalo R; Vives-Bauza C; Andreu AL; García-Arumí E Clin Chem Lab Med; 2004; 42(8):903-6. PubMed ID: 15387440 [TBL] [Abstract][Full Text] [Related]
18. Increased plasma malondialdehyde levels in glomerular disease as determined by a fully validated HPLC method. Templar J; Kon SP; Milligan TP; Newman DJ; Raftery MJ Nephrol Dial Transplant; 1999 Apr; 14(4):946-51. PubMed ID: 10328476 [TBL] [Abstract][Full Text] [Related]
19. Application of FTIR-ATR Spectroscopy to Determine the Extent of Lipid Peroxidation in Plasma during Haemodialysis. Oleszko A; Olsztyńska-Janus S; Walski T; Grzeszczuk-Kuć K; Bujok J; Gałecka K; Czerski A; Witkiewicz W; Komorowska M Biomed Res Int; 2015; 2015():245607. PubMed ID: 25961007 [TBL] [Abstract][Full Text] [Related]
20. Lipid peroxidation and catalase in diabetes mellitus with and without ischemic stroke. Cojocaru IM; Cojocaru M; Muşuroi C; Botezat M; Lazăr L; Drută A Rom J Intern Med; 2004; 42(2):423-9. PubMed ID: 15529632 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]