These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
128 related articles for article (PubMed ID: 8746673)
1. Intermediate filament organization, reorganization, and function in the clawed frog Xenopus. Klymkowsky MW Curr Top Dev Biol; 1995; 31():455-86. PubMed ID: 8746673 [No Abstract] [Full Text] [Related]
2. Intermediate filament organization during oogenesis and early development in the clawed frog, Xenopus laevis. Gard DL; Klymkowsky MW Subcell Biochem; 1998; 31():35-70. PubMed ID: 9932489 [No Abstract] [Full Text] [Related]
3. Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos. Klymkowsky MW; Maynell LA; Polson AG Development; 1987 Jul; 100(3):543-57. PubMed ID: 2443336 [TBL] [Abstract][Full Text] [Related]
4. Desmin organization during the differentiation of the dorsal myotome in Xenopus laevis. Cary RB; Klymkowsky MW Differentiation; 1994 Apr; 56(1-2):31-8. PubMed ID: 8026644 [TBL] [Abstract][Full Text] [Related]
5. Intermediate filaments in oocytes. Gall L Bull Assoc Anat (Nancy); 1991 Mar; 75(228):63-5. PubMed ID: 1782469 [No Abstract] [Full Text] [Related]
6. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs. Clarke EJ; Allan VJ Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528 [TBL] [Abstract][Full Text] [Related]
7. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes. Gard DL Microsc Res Tech; 1999 Mar; 44(6):388-414. PubMed ID: 10211674 [TBL] [Abstract][Full Text] [Related]
8. Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis. Lin W; Szaro BG Dev Biol; 1996 Oct; 179(1):197-211. PubMed ID: 8873764 [TBL] [Abstract][Full Text] [Related]
10. Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frog Xenopus. Franz JK; Gall L; Williams MA; Picheral B; Franke WW Proc Natl Acad Sci U S A; 1983 Oct; 80(20):6254-8. PubMed ID: 6194528 [TBL] [Abstract][Full Text] [Related]
11. Histological preparation of Xenopus laevis oocytes and embryos. Kelly GM; Eib DW; Moon RT Methods Cell Biol; 1991; 36():389-417. PubMed ID: 1725801 [No Abstract] [Full Text] [Related]
12. Evidence that the deep keratin filament systems of the Xenopus embryo act to ensure normal gastrulation. Klymkowsky MW; Shook DR; Maynell LA Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8736-40. PubMed ID: 1382297 [TBL] [Abstract][Full Text] [Related]
14. Dominant negative E2F inhibits progression of the cell cycle after the midblastula transition in Xenopus. Tanaka T; Ono T; Kitamura N; Kato JY Cell Struct Funct; 2003 Dec; 28(6):515-22. PubMed ID: 15004421 [TBL] [Abstract][Full Text] [Related]
15. Division versus differentiation in the early Xenopus embryo. Philpott A SEB Exp Biol Ser; 2008; 59():145-65. PubMed ID: 18368922 [No Abstract] [Full Text] [Related]
16. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules. Gard DL; Cha BJ; King E Dev Biol; 1997 Apr; 184(1):95-114. PubMed ID: 9142987 [TBL] [Abstract][Full Text] [Related]
17. Responses to DNA damage in Xenopus: cell death or cell cycle arrest. Greenwood J; Costanzo V; Robertson K; Hensey C; Gautier J Novartis Found Symp; 2001; 237():221-30; discussion 230-4. PubMed ID: 11444046 [TBL] [Abstract][Full Text] [Related]
18. Cortical cytoskeleton of the Xenopus oocyte, egg, and early embryo. Larabell CA Curr Top Dev Biol; 1995; 31():433-53. PubMed ID: 8746672 [No Abstract] [Full Text] [Related]