These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 8746673)

  • 1. Intermediate filament organization, reorganization, and function in the clawed frog Xenopus.
    Klymkowsky MW
    Curr Top Dev Biol; 1995; 31():455-86. PubMed ID: 8746673
    [No Abstract]   [Full Text] [Related]  

  • 2. Intermediate filament organization during oogenesis and early development in the clawed frog, Xenopus laevis.
    Gard DL; Klymkowsky MW
    Subcell Biochem; 1998; 31():35-70. PubMed ID: 9932489
    [No Abstract]   [Full Text] [Related]  

  • 3. Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos.
    Klymkowsky MW; Maynell LA; Polson AG
    Development; 1987 Jul; 100(3):543-57. PubMed ID: 2443336
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Desmin organization during the differentiation of the dorsal myotome in Xenopus laevis.
    Cary RB; Klymkowsky MW
    Differentiation; 1994 Apr; 56(1-2):31-8. PubMed ID: 8026644
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intermediate filaments in oocytes.
    Gall L
    Bull Assoc Anat (Nancy); 1991 Mar; 75(228):63-5. PubMed ID: 1782469
    [No Abstract]   [Full Text] [Related]  

  • 6. Cytokeratin intermediate filament organisation and dynamics in the vegetal cortex of living Xenopus laevis oocytes and eggs.
    Clarke EJ; Allan VJ
    Cell Motil Cytoskeleton; 2003 Sep; 56(1):13-26. PubMed ID: 12905528
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confocal microscopy and 3-D reconstruction of the cytoskeleton of Xenopus oocytes.
    Gard DL
    Microsc Res Tech; 1999 Mar; 44(6):388-414. PubMed ID: 10211674
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of intermediate filament disruption on the early development of the peripheral nervous system of Xenopus laevis.
    Lin W; Szaro BG
    Dev Biol; 1996 Oct; 179(1):197-211. PubMed ID: 8873764
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Regulatory pathways coordinating cell cycle progression in early Xenopus development.
    Gotoh T; Villa LM; Capelluto DG; Finkielstein CV
    Results Probl Cell Differ; 2011; 53():171-99. PubMed ID: 21630146
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Intermediate-size filaments in a germ cell: Expression of cytokeratins in oocytes and eggs of the frog Xenopus.
    Franz JK; Gall L; Williams MA; Picheral B; Franke WW
    Proc Natl Acad Sci U S A; 1983 Oct; 80(20):6254-8. PubMed ID: 6194528
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Histological preparation of Xenopus laevis oocytes and embryos.
    Kelly GM; Eib DW; Moon RT
    Methods Cell Biol; 1991; 36():389-417. PubMed ID: 1725801
    [No Abstract]   [Full Text] [Related]  

  • 12. Evidence that the deep keratin filament systems of the Xenopus embryo act to ensure normal gastrulation.
    Klymkowsky MW; Shook DR; Maynell LA
    Proc Natl Acad Sci U S A; 1992 Sep; 89(18):8736-40. PubMed ID: 1382297
    [TBL] [Abstract][Full Text] [Related]  

  • 13. 14-3-3 targets keratin intermediate filaments to mechanically sensitive cell-cell contacts.
    Mariani RA; Paranjpe S; Dobrowolski R; Weber GF
    Mol Biol Cell; 2020 Apr; 31(9):930-943. PubMed ID: 32074004
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dominant negative E2F inhibits progression of the cell cycle after the midblastula transition in Xenopus.
    Tanaka T; Ono T; Kitamura N; Kato JY
    Cell Struct Funct; 2003 Dec; 28(6):515-22. PubMed ID: 15004421
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Division versus differentiation in the early Xenopus embryo.
    Philpott A
    SEB Exp Biol Ser; 2008; 59():145-65. PubMed ID: 18368922
    [No Abstract]   [Full Text] [Related]  

  • 16. The organization and animal-vegetal asymmetry of cytokeratin filaments in stage VI Xenopus oocytes is dependent upon F-actin and microtubules.
    Gard DL; Cha BJ; King E
    Dev Biol; 1997 Apr; 184(1):95-114. PubMed ID: 9142987
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Responses to DNA damage in Xenopus: cell death or cell cycle arrest.
    Greenwood J; Costanzo V; Robertson K; Hensey C; Gautier J
    Novartis Found Symp; 2001; 237():221-30; discussion 230-4. PubMed ID: 11444046
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cortical cytoskeleton of the Xenopus oocyte, egg, and early embryo.
    Larabell CA
    Curr Top Dev Biol; 1995; 31():433-53. PubMed ID: 8746672
    [No Abstract]   [Full Text] [Related]  

  • 19. Analyzing dynamic properties of intermediate filaments.
    Vikstrom KL; Miller RK; Goldman RD
    Methods Enzymol; 1991; 196():506-25. PubMed ID: 1709715
    [No Abstract]   [Full Text] [Related]  

  • 20. Obtaining
    Shaidani NI; McNamara S; Wlizla M; Horb ME
    Cold Spring Harb Protoc; 2021 Mar; 2021(3):pdb.prot106211. PubMed ID: 33272975
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.