These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
110 related articles for article (PubMed ID: 8746771)
1. The source of brain adenosine outflow during ischemia and electrical stimulation. Latini S; Corsi C; Pedata F; Pepeu G Neurochem Int; 1996 Jan; 28(1):113-8. PubMed ID: 8746771 [TBL] [Abstract][Full Text] [Related]
2. The source of brain adenosine outflow during ischemia and electrical stimulation. Latini S; Corsi C; Pedata F; Pepeu G Neurochem Int; 1995 Sep; 27(3):239-44. PubMed ID: 8520462 [TBL] [Abstract][Full Text] [Related]
3. Effect of idebenone on adenosine outflow and adenine nucleotide level in hippocampal slices under ischemia-like conditions. Latini S; Pedata F; Pepeu G Eur J Pharmacol; 1993 Nov; 249(1):65-70. PubMed ID: 8282020 [TBL] [Abstract][Full Text] [Related]
4. Investigations into the adenosine outflow from hippocampal slices evoked by ischemia-like conditions. Pedata F; Latini S; Pugliese AM; Pepeu G J Neurochem; 1993 Jul; 61(1):284-9. PubMed ID: 8515275 [TBL] [Abstract][Full Text] [Related]
5. Preferential release of ATP and its extracellular catabolism as a source of adenosine upon high- but not low-frequency stimulation of rat hippocampal slices. Cunha RA; Vizi ES; Ribeiro JA; Sebastião AM J Neurochem; 1996 Nov; 67(5):2180-7. PubMed ID: 8863529 [TBL] [Abstract][Full Text] [Related]
6. Determinants of the S-adenosylhomocysteine (SAH) technique for the local assessment of cardiac free cytosolic adenosine. Loncar R; Flesche CW; Deussen A J Mol Cell Cardiol; 1997 May; 29(5):1289-305. PubMed ID: 9201616 [TBL] [Abstract][Full Text] [Related]
7. Temporal correlation between adenosine outflow and synaptic potential inhibition in rat hippocampal slices during ischemia-like conditions. Latini S; Bordoni F; Corradetti R; Pepeu G; Pedata F Brain Res; 1998 Jun; 794(2):325-8. PubMed ID: 9622666 [TBL] [Abstract][Full Text] [Related]
8. Levels of adenosine and adenine nucleotides in slices of rat hippocampus. Fredholm BB; Dunwiddie TV; Bergman B; Lindström K Brain Res; 1984 Mar; 295(1):127-36. PubMed ID: 6324948 [TBL] [Abstract][Full Text] [Related]
9. Intracellular formation and release of adenosine from rat hippocampal slices evoked by electrical stimulation or energy depletion. Lloyd HG; Lindström K; Fredholm BB Neurochem Int; 1993 Aug; 23(2):173-85. PubMed ID: 8369741 [TBL] [Abstract][Full Text] [Related]
10. Existence and role of substrate cycling between AMP and adenosine in isolated rabbit cardiomyocytes under control conditions and in ATP depletion. Wagner DR; Bontemps F; van den Berghe G Circulation; 1994 Sep; 90(3):1343-9. PubMed ID: 8087944 [TBL] [Abstract][Full Text] [Related]
12. Rapid turnover of the AMP-adenosine metabolic cycle in the guinea pig heart. Kroll K; Decking UK; Dreikorn K; Schrader J Circ Res; 1993 Nov; 73(5):846-56. PubMed ID: 8403255 [TBL] [Abstract][Full Text] [Related]
13. Regional differences in the electrically stimulated release of endogenous and radioactive adenosine and purine derivatives from rat brain slices. Pedata F; Pazzagli M; Tilli S; Pepeu G Naunyn Schmiedebergs Arch Pharmacol; 1990 Oct; 342(4):447-53. PubMed ID: 2255336 [TBL] [Abstract][Full Text] [Related]
14. A study on the sequestration of adenosine and its conversion to adenine by the cyclic AMP-adenosine binding protein/S-adenosylhomocysteinase from mouse liver. Saebø J; Ueland PM Biochim Biophys Acta; 1979 Oct; 587(3):333-40. PubMed ID: 45001 [No Abstract] [Full Text] [Related]
15. Evidence for a substrate cycle between AMP and adenosine in isolated hepatocytes. Bontemps F; Van den Berghe G; Hers HG Proc Natl Acad Sci U S A; 1983 May; 80(10):2829-33. PubMed ID: 6304684 [TBL] [Abstract][Full Text] [Related]
16. Adenosine metabolism in the guinea pig heart: the role of cytosolic S-adenosyl-L-homocysteine hydrolase, 5'-nucleotidase and adenosine kinase. Lloyd HG; Schrader J Eur Heart J; 1993 Nov; 14 Suppl I():27-33. PubMed ID: 8293779 [TBL] [Abstract][Full Text] [Related]
17. Role of S-adenosylhomocysteine hydrolase in adenosine metabolism in mammalian heart. Schrader J; Schütz W; Bardenheuer H Biochem J; 1981 Apr; 196(1):65-70. PubMed ID: 7306081 [TBL] [Abstract][Full Text] [Related]
18. Adenosine analogues as substrates and inhibitors of S-adenosylhomocysteine hydrolase in intact lymphocytes. Zimmerman TP; Wolberg G; Duncan GS; Elion GB Biochemistry; 1980 May; 19(10):2252-9. PubMed ID: 7378359 [TBL] [Abstract][Full Text] [Related]
19. Effect of hypoxia and glucose deprivation on ATP level, adenylate energy charge and [Ca2+]o-dependent and independent release of [3H]dopamine in rat striatal slices. Milusheva EA; Dóda M; Baranyi M; Vizi ES Neurochem Int; 1996; 28(5-6):501-7. PubMed ID: 8792331 [TBL] [Abstract][Full Text] [Related]
20. Effect of 9-beta-D-arabinofuranosyladenine and erythro-9-(2-hydroxy-3-nonyl) adenine on the metabolism of S-adenosylhomocysteine, S-adenosylmethionine, and adenosine in rat liver. Eloranta TO; Kajander EO; Raina AM Med Biol; 1982 Oct; 60(5):272-7. PubMed ID: 7154718 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]