These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

225 related articles for article (PubMed ID: 8746844)

  • 1. Regulation of energy metabolism in liver.
    Soboll S
    J Bioenerg Biomembr; 1995 Dec; 27(6):571-82. PubMed ID: 8746844
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Control of oxidative phosphorylation, gluconeogenesis, ureagenesis and ATP turnover in isolated perfused rat liver analyzed by top-down metabolic control analysis.
    Soboll S; Oh MH; Brown GC
    Eur J Biochem; 1998 May; 254(1):194-201. PubMed ID: 9652414
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Top-down control analysis of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Aug; 263(3):671-85. PubMed ID: 10469130
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Internal regulation of ATP turnover, glycolysis and oxidative phosphorylation in rat hepatocytes.
    Ainscow EK; Brand MD
    Eur J Biochem; 1999 Dec; 266(3):737-49. PubMed ID: 10583367
    [TBL] [Abstract][Full Text] [Related]  

  • 5. High resolution respirometry analysis of polyethylenimine-mediated mitochondrial energy crisis and cellular stress: Mitochondrial proton leak and inhibition of the electron transport system.
    Hall A; Larsen AK; Parhamifar L; Meyle KD; Wu LP; Moghimi SM
    Biochim Biophys Acta; 2013 Oct; 1827(10):1213-25. PubMed ID: 23850549
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative analysis of some mechanisms affecting the yield of oxidative phosphorylation: dependence upon both fluxes and forces.
    Rigoulet M; Leverve X; Fontaine E; Ouhabi R; Guérin B
    Mol Cell Biochem; 1998 Jul; 184(1-2):35-52. PubMed ID: 9746311
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Oxidative phosphorylation in intact hepatocytes: quantitative characterization of the mechanisms of change in efficiency and cellular consequences.
    Leverve X; Sibille B; Devin A; Piquet MA; Espié P; Rigoulet M
    Mol Cell Biochem; 1998 Jul; 184(1-2):53-65. PubMed ID: 9746312
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical studies on the control of the oxidative phosphorylation system.
    Korzeniewski B; Froncisz W
    Biochim Biophys Acta; 1992 Aug; 1102(1):67-75. PubMed ID: 1324730
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Long-term fasting of donors deteriorates mitochondrial adenosine triphosphate synthesis in liver grafts during cold preservation.
    Fukumori T; Ohkohchi N; Tsukamoto S; Asakura T; Oikawa K; Takayama J; Orii T; Kato H; Satomi S
    Transplant Proc; 1997 Dec; 29(8):3360-1. PubMed ID: 9414749
    [No Abstract]   [Full Text] [Related]  

  • 10. Age-related increase in mitochondrial proton leak and decrease in ATP turnover reactions in mouse hepatocytes.
    Harper ME; Monemdjou S; Ramsey JJ; Weindruch R
    Am J Physiol; 1998 Aug; 275(2):E197-206. PubMed ID: 9688619
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of Stryphnodendron adstringens (barbatimão) on energy metabolism in the rat liver.
    Rebecca MA; Ishii-Iwamoto EL; Kelmer-Bracht AM; Caparroz-Assef SM; Cuman RK; Pagadigorria CL; de Mello JC; Bracht A; Bersani-Amado CA
    Toxicol Lett; 2003 Jun; 143(1):55-63. PubMed ID: 12697381
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of precursors of biosyntheses on the energy metabolism of the liver cell.
    Letko G; Küster U; Pohl K
    Biomed Biochim Acta; 1983; 42(4):323-33. PubMed ID: 6312977
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Substrate oxidation and energy production by Guerin epithelioma mitochondria.
    Pawlicka E; Rzezycki CW
    Arch Geschwulstforsch; 1979; 49(2):124-31. PubMed ID: 224832
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The metabolic effects of diuron in the rat liver.
    da Silva Simões M; Bracht L; Parizotto AV; Comar JF; Peralta RM; Bracht A
    Environ Toxicol Pharmacol; 2017 Sep; 54():53-61. PubMed ID: 28683350
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP metabolism in an ethanol-induced fatty liver.
    Gordon ER
    Alcohol Clin Exp Res; 1977 Jan; 1(1):21-5. PubMed ID: 145189
    [No Abstract]   [Full Text] [Related]  

  • 16. Mechanisms of inhibition and uncoupling of respiration in isolated rat liver mitochondria by the general anesthetic 2,6-diisopropylphenol.
    Rigoulet M; Devin A; Avéret N; Vandais B; Guérin B
    Eur J Biochem; 1996 Oct; 241(1):280-5. PubMed ID: 8898917
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Control of the effective P/O ratio of oxidative phosphorylation in liver mitochondria and hepatocytes.
    Brand MD; Harper ME; Taylor HC
    Biochem J; 1993 May; 291 ( Pt 3)(Pt 3):739-48. PubMed ID: 8489502
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Uncoupling protein-2 (UCP2) induces mitochondrial proton leak and increases susceptibility of non-alcoholic steatohepatitis (NASH) liver to ischaemia-reperfusion injury.
    Serviddio G; Bellanti F; Tamborra R; Rollo T; Capitanio N; Romano AD; Sastre J; Vendemiale G; Altomare E
    Gut; 2008 Jul; 57(7):957-65. PubMed ID: 18308829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cellular energy utilization and molecular origin of standard metabolic rate in mammals.
    Rolfe DF; Brown GC
    Physiol Rev; 1997 Jul; 77(3):731-58. PubMed ID: 9234964
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Subcellular metabolite concentrations. Dependence of mitochondrial and cytosolic ATP systems on the metabolic state of perfused rat liver.
    Soboll S; Scholz R; Heldt HW
    Eur J Biochem; 1978 Jun; 87(2):377-90. PubMed ID: 668699
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.