These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
158 related articles for article (PubMed ID: 8746846)
1. Extracellular ascorbate stabilization as a result of transplasma electron transfer in Saccharomyces cerevisiae. Santos-Ocaña C; Navas P; Crane FL; Córdoba F J Bioenerg Biomembr; 1995 Dec; 27(6):597-603. PubMed ID: 8746846 [TBL] [Abstract][Full Text] [Related]
2. Genetic evidence for coenzyme Q requirement in plasma membrane electron transport. Santos-Ocaña C; Villalba JM; Córdoba F; Padilla S; Crane FL; Clarke CF; Navas P J Bioenerg Biomembr; 1998 Oct; 30(5):465-75. PubMed ID: 9932649 [TBL] [Abstract][Full Text] [Related]
3. Ascorbate is regenerated by HL-60 cells through the transplasmalemma redox system. Alcain FJ; Buron MI; Villalba JM; Navas P Biochim Biophys Acta; 1991 Mar; 1073(2):380-5. PubMed ID: 2009284 [TBL] [Abstract][Full Text] [Related]
4. Coenzyme Q6 and iron reduction are responsible for the extracellular ascorbate stabilization at the plasma membrane of Saccharomyces cerevisiae. Santos-Ocaña C; Córdoba F; Crane FL; Clarke CF; Navas P J Biol Chem; 1998 Apr; 273(14):8099-105. PubMed ID: 9525912 [TBL] [Abstract][Full Text] [Related]
5. Ascorbate-dependent electron transfer across the human erythrocyte membrane. May JM; Qu ZC Biochim Biophys Acta; 1999 Sep; 1421(1):19-31. PubMed ID: 10561468 [TBL] [Abstract][Full Text] [Related]
6. Ascorbate stimulates ferricyanide reduction in HL-60 cells through a mechanism distinct from the NADH-dependent plasma membrane reductase. Van Duijn MM; Van der Zee J; VanSteveninck J; Van den Broek PJ J Biol Chem; 1998 May; 273(22):13415-20. PubMed ID: 9593673 [TBL] [Abstract][Full Text] [Related]
7. Transmembrane ferricyanide reduction by cells of the yeast Saccharomyces cerevisiae. Crane FL; Roberts H; Linnane AW; Löw H J Bioenerg Biomembr; 1982 Jun; 14(3):191-205. PubMed ID: 7047521 [TBL] [Abstract][Full Text] [Related]
8. Antioxidant ascorbate is stabilized by NADH-coenzyme Q10 reductase in the plasma membrane. Gómez-Díaz C; Rodríguez-Aguilera JC; Barroso MP; Villalba JM; Navarro F; Crane FL; Navas P J Bioenerg Biomembr; 1997 Jun; 29(3):251-7. PubMed ID: 9298710 [TBL] [Abstract][Full Text] [Related]
9. Ascorbate stabilization is stimulated in rho(0)HL-60 cells by CoQ10 increase at the plasma membrane. Gómez-Díaz C; Villalba JM; Pérez-Vicente R; Crane FL; Navas P Biochem Biophys Res Commun; 1997 May; 234(1):79-81. PubMed ID: 9168964 [TBL] [Abstract][Full Text] [Related]
10. Interactions between ascorbyl free radical and coenzyme Q at the plasma membrane. Arroyo A; Navarro F; Gómez-Díaz C; Crane FL; Alcaín FJ; Navas P; Villalba JM J Bioenerg Biomembr; 2000 Apr; 32(2):199-210. PubMed ID: 11768753 [TBL] [Abstract][Full Text] [Related]
11. Stabilization of extracellular ascorbate mediated by coenzyme Q transmembrane electron transport. Arroyo A; Rodríguez-Aguilera JC; Santos-Ocaña C; Villalba JM; Navas P Methods Enzymol; 2004; 378():207-17. PubMed ID: 15038971 [No Abstract] [Full Text] [Related]
12. Transplasma membrane electron transport comes in two flavors. Lane DJ; Lawen A Biofactors; 2008; 34(3):191-200. PubMed ID: 19734120 [TBL] [Abstract][Full Text] [Related]
13. Transplasma membrane redox system in HL-60 cells is modulated during TPA-induced differentiation. Burón MI; Rodriguez-Aguilera JC; Alcaín FJ; Navas P Biochem Biophys Res Commun; 1993 Apr; 192(2):439-45. PubMed ID: 8484755 [TBL] [Abstract][Full Text] [Related]
14. Properties of a transplasma membrane electron transport system in HeLa cells. Sun IL; Crane FL; Grebing C; Löw H J Bioenerg Biomembr; 1984 Dec; 16(5-6):583-95. PubMed ID: 6537437 [TBL] [Abstract][Full Text] [Related]
15. Evidence for coenzyme Q function in transplasma membrane electron transport. Sun IL; Sun EE; Crane FL; Morré DJ Biochem Biophys Res Commun; 1990 Nov; 172(3):979-84. PubMed ID: 2244922 [TBL] [Abstract][Full Text] [Related]
16. Ascorbate-mediated transmembrane electron transport and ascorbate uptake in leukemic cell lines are two different processes. Schweinzer E; Goldenberg H Eur J Biochem; 1992 Jun; 206(3):807-12. PubMed ID: 1606963 [TBL] [Abstract][Full Text] [Related]
17. Coenzyme Q(1) depletes NAD(P)H and impairs recycling of ascorbate in astrocytes. Dragan M; Dixon SJ; Jaworski E; Chan TS; O'brien PJ; Wilson JX Brain Res; 2006 Mar; 1078(1):9-18. PubMed ID: 16499885 [TBL] [Abstract][Full Text] [Related]
18. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants. Santos-Ocaña C; Do TQ; Padilla S; Navas P; Clarke CF J Biol Chem; 2002 Mar; 277(13):10973-81. PubMed ID: 11788608 [TBL] [Abstract][Full Text] [Related]
19. A role for Na+/H+ exchangers and intracellular pH in regulating vitamin C-driven electron transport across the plasma membrane. Lane DJ; Robinson SR; Czerwinska H; Lawen A Biochem J; 2010 May; 428(2):191-200. PubMed ID: 20307259 [TBL] [Abstract][Full Text] [Related]
20. CNS neurons express two distinct plasma membrane electron transport systems implicated in neuronal viability. Wright MV; Kuhn TB J Neurochem; 2002 Nov; 83(3):655-64. PubMed ID: 12390527 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]