BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

385 related articles for article (PubMed ID: 8747145)

  • 1. From objective to subjective: pitch representation in the human auditory cortex.
    Winkler I; Tervaniemi M; Huotilainen M; Ilmoniemi R; Ahonen A; Salonen O; Standertskjöld-Nordenstam CG; Näätänen R
    Neuroreport; 1995 Nov; 6(17):2317-20. PubMed ID: 8747145
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Representation of harmonic frequencies in auditory memory: a mismatch negativity study.
    Zion-Golumbic E; Deouell LY; Whalen DH; Bentin S
    Psychophysiology; 2007 Sep; 44(5):671-9. PubMed ID: 17608799
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Processing of novel sounds and frequency changes in the human auditory cortex: magnetoencephalographic recordings.
    Alho K; Winkler I; Escera C; Huotilainen M; Virtanen J; Jääskeläinen IP; Pekkonen E; Ilmoniemi RJ
    Psychophysiology; 1998 Mar; 35(2):211-24. PubMed ID: 9529947
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial location is accurately tracked by human auditory sensory memory: evidence from the mismatch negativity.
    Deouell LY; Parnes A; Pickard N; Knight RT
    Eur J Neurosci; 2006 Sep; 24(5):1488-94. PubMed ID: 16987229
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Localizing pre-attentive auditory memory-based comparison: magnetic mismatch negativity to pitch change.
    Maess B; Jacobsen T; Schröger E; Friederici AD
    Neuroimage; 2007 Aug; 37(2):561-71. PubMed ID: 17596966
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Time course and hemispheric lateralization effects of complex pitch processing: evoked magnetic fields in response to rippled noise stimuli.
    Hertrich I; Mathiak K; Lutzenberger W; Ackermann H
    Neuropsychologia; 2004; 42(13):1814-26. PubMed ID: 15351630
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Preattentive cortical-evoked responses to pure tones, harmonic tones, and speech: influence of music training.
    Nikjeh DA; Lister JJ; Frisch SA
    Ear Hear; 2009 Aug; 30(4):432-46. PubMed ID: 19494778
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Latency variation of auditory N1m responses to vocal and nonvocal sounds.
    Mizuochi T; Yumoto M; Karino S; Itoh K; Yamasoba T
    Neuroreport; 2007 Dec; 18(18):1945-9. PubMed ID: 18007192
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preattentive detection of nonsalient contingencies between auditory features.
    Paavilainen P; Arajärvi P; Takegata R
    Neuroreport; 2007 Jan; 18(2):159-63. PubMed ID: 17301682
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Auditory cortex responses to the transition from monophonic to pseudo-stereo sound.
    Ross B; Herdman AT; Wollbrink A; Pantev C
    Neurol Clin Neurophysiol; 2004 Nov; 2004():18. PubMed ID: 16012692
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perceptual organization of tone sequences in the auditory cortex of awake macaques.
    Micheyl C; Tian B; Carlyon RP; Rauschecker JP
    Neuron; 2005 Oct; 48(1):139-48. PubMed ID: 16202714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Change detection in newborns using a multiple deviant paradigm: a study using magnetoencephalography.
    Sambeth A; Pakarinen S; Ruohio K; Fellman V; van Zuijen TL; Huotilainen M
    Clin Neurophysiol; 2009 Mar; 120(3):530-8. PubMed ID: 19211303
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemispheric asymmetry of auditory evoked fields elicited by spectral versus temporal stimulus change.
    Okamoto H; Stracke H; Draganova R; Pantev C
    Cereb Cortex; 2009 Oct; 19(10):2290-7. PubMed ID: 19136454
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discrimination of speech and of complex nonspeech sounds of different temporal structure in the left and right cerebral hemispheres.
    Shtyrov Y; Kujala T; Palva S; Ilmoniemi RJ; Näätänen R
    Neuroimage; 2000 Dec; 12(6):657-63. PubMed ID: 11112397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Selective attention to sound location or pitch studied with event-related brain potentials and magnetic fields.
    Degerman A; Rinne T; Särkkä AK; Salmi J; Alho K
    Eur J Neurosci; 2008 Jun; 27(12):3329-41. PubMed ID: 18598270
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Newborns discriminate novel from harmonic sounds: a study using magnetoencephalography.
    Sambeth A; Huotilainen M; Kushnerenko E; Fellman V; Pihko E
    Clin Neurophysiol; 2006 Mar; 117(3):496-503. PubMed ID: 16426892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How the human auditory system treats repetition amongst change.
    Horváth J; Winkler I
    Neurosci Lett; 2004 Sep; 368(2):157-61. PubMed ID: 15351440
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superior formation of cortical memory traces for melodic patterns in musicians.
    Tervaniemi M; Rytkönen M; Schröger E; Ilmoniemi RJ; Näätänen R
    Learn Mem; 2001; 8(5):295-300. PubMed ID: 11584077
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A multilevel and cross-modal approach towards neuronal mechanisms of auditory streaming.
    Rahne T; Deike S; Selezneva E; Brosch M; König R; Scheich H; Böckmann M; Brechmann A
    Brain Res; 2008 Jul; 1220():118-31. PubMed ID: 17765207
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Musical training enhances automatic encoding of melodic contour and interval structure.
    Fujioka T; Trainor LJ; Ross B; Kakigi R; Pantev C
    J Cogn Neurosci; 2004; 16(6):1010-21. PubMed ID: 15298788
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 20.