BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

183 related articles for article (PubMed ID: 8747436)

  • 1. Effect of Mg2+ concentrations on phosphorylation/activation of phosphorylase b kinase by cAMP/Ca(2+)-independent, autophosphorylation-dependent protein kinase.
    Yu JS; Lee SC; Yang SD
    J Protein Chem; 1995 Nov; 14(8):747-52. PubMed ID: 8747436
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phosphorylation/activation of phosphorylase b kinase by cAMP/Ca2(+)-independent, autophosphorylation-dependent protein kinase.
    Yu JS; Yang SD
    Biochem Biophys Res Commun; 1995 Feb; 207(1):140-7. PubMed ID: 7857257
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effect of Mg2+ concentration on the cAMP-dependent protein kinase-catalyzed activation of rabbit skeletal muscle phosphorylase kinase.
    Singh TJ; Wang JH
    J Biol Chem; 1977 Jan; 252(2):625-32. PubMed ID: 188821
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Control of phosphorylase kinase in the isolated glycogen particle by Ca2+-Mg2+ synergistic activation and cAMP-dependent phosphorylation.
    Hallenbeck PC; Walsh DA
    J Biol Chem; 1986 Apr; 261(12):5442-9. PubMed ID: 3007504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Subunit phosphorylation and activation of skeletal muscle phosphorylase kinase by the cAMP-dependent protein kinase. Divalent metal ion, ATP, and protein concentration dependence.
    Pickett-Gies CA; Walsh DA
    J Biol Chem; 1985 Feb; 260(4):2046-56. PubMed ID: 2982804
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Autophosphorylation of phosphorylase kinase. Divalent metal cation and nucleotide dependency.
    Hallenbeck PC; Walsh DA
    J Biol Chem; 1983 Nov; 258(22):13493-501. PubMed ID: 6643437
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identification and characterization of a phosphorylation-activated, cyclic AMP and Ca2+-independent protein kinase in the brain.
    Yang SD; Fong YL; Yu JS; Liu JS
    J Biol Chem; 1987 May; 262(15):7034-40. PubMed ID: 2438273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphorylation and activation of rabbit skeletal muscle phosphorylase kinase by a cyclic nucleotide- and Ca2+-independent protein kinase.
    Singh TJ; Akatsuka A; Huang KP
    J Biol Chem; 1982 Nov; 257(22):13379-84. PubMed ID: 6292188
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of the phosphorylation of rabbit skeletal muscle phosphorylase kinase by cAMP-dependent protein kinase and cAMP-independent glycogen synthase (casein) kinase-1.
    Singh TJ; Akatsuka A; Huang KP
    J Biol Chem; 1984 Oct; 259(20):12857-64. PubMed ID: 6092348
    [TBL] [Abstract][Full Text] [Related]  

  • 10. ADP-ribosylation of phosphorylase kinase and block of phosphate incorporation into the enzyme.
    Tsuchiya M; Tanigawa Y; Ushiroyama T; Matsuura R; Shimoyama M
    Eur J Biochem; 1985 Feb; 147(1):33-40. PubMed ID: 2982611
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The interrelationship between cAMP-dependent alpha and beta subunit phosphorylation in the regulation of phosphorylase kinase activity. Studies using subunit specific phosphatases.
    Ramachandran C; Goris J; Waelkens E; Merlevede W; Walsh DA
    J Biol Chem; 1987 Mar; 262(7):3210-8. PubMed ID: 3029103
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of initial autophosphorylation events in rabbit skeletal muscle phosphorylase kinase.
    King MM; Fitzgerald TJ; Carlson GM
    J Biol Chem; 1983 Aug; 258(16):9925-30. PubMed ID: 6604053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hysteretic properties of rabbit skeletal muscle phosphorylase kinase: synergistic activation by phosphorylase b, Ca2+, and Mg2+.
    Kurganov BI; Andreeva IE; Makeeva VF; Livanova NB
    Biochem Mol Biol Int; 1996 Jul; 39(4):805-12. PubMed ID: 8843350
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphorylase kinase from chicken skeletal muscle. Quaternary structure, regulatory properties and partial proteolysis.
    Andreeva IE; Livanova NB; Eronina TB; Silonova GV; Poglazov BF
    Eur J Biochem; 1986 Jul; 158(1):99-106. PubMed ID: 3089780
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergistic activation by Ca2+ and Mg2+ as the primary cause for hysteresis in the phosphorylase kinase reactions.
    King MM; Carlson GM
    J Biol Chem; 1981 Nov; 256(21):11058-64. PubMed ID: 6793591
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Kinetics of the interaction of rabbit skeletal muscle phosphorylase kinase with glycogen.
    Andreeva IE; Makeeva VF; Kurganov BI; Chebotareva NA; Livanova NB
    Biochemistry (Mosc); 1999 Feb; 64(2):159-68. PubMed ID: 10187906
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulatory properties of rabbit liver phosphorylase kinase.
    Beleta J; Benedicto P; Gella FJ
    Int J Biochem; 1990; 22(5):453-60. PubMed ID: 2161356
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Renaturation of phosphorylase kinase activity from sodium dodecyl sulfate-polyacrylamide gels.
    Paudel HK; Carlson GM
    Arch Biochem Biophys; 1988 Aug; 264(2):641-6. PubMed ID: 3135782
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Autophosphorylation of the alpha subunit of phosphorylase kinase from rabbit skeletal muscle.
    Fitzgerald TJ; Trempe MR; Carlson GM
    J Biol Chem; 1987 Aug; 262(23):11239-46. PubMed ID: 3038913
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The rate of calcium uptake into sarcoplasmic reticulum of cardiac muscle and skeletal muscle. Effects of cyclic AMP-dependent protein kinase and phosphorylase b kinase.
    Schwartz A; Entman ML; Kaniike K; Lane LK; Van Winkle WB; Bornet EP
    Biochim Biophys Acta; 1976 Feb; 426(1):57-72. PubMed ID: 2325
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.