BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 874746)

  • 1. Diffusion model for drug release from suspensions I: theoretical considerations.
    Ayres JW; Lindstrom FT
    J Pharm Sci; 1977 May; 66(5):654-62. PubMed ID: 874746
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diffusion model for drug release from suspensions II: release to a perfect sink.
    Lindstrom FT; Ayres JW
    J Pharm Sci; 1977 May; 66(5):662-8. PubMed ID: 874747
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Release of drugs from ointment bases II: In vitro release of benzocaine from suspension-type aqueous gels.
    Bottari F; Di Colo G; Nannipieri E; Saettone MF; Serafini MF
    J Pharm Sci; 1977 Jul; 66(7):926-31. PubMed ID: 886452
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A two-dimensional mathematical model of non-linear dual-sorption of percutaneous drug absorption.
    George K
    Biomed Eng Online; 2005 Jul; 4():40. PubMed ID: 15992411
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A diffusion-diffusion model for percutaneous drug absorption.
    Kubota K; Ishizaki T
    J Pharmacokinet Biopharm; 1986 Aug; 14(4):409-39. PubMed ID: 3772740
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Percutaneous absorption.
    Brisson P
    Can Med Assoc J; 1974 May; 110(10):1182-5. PubMed ID: 4597976
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A general model of coupled drug release and tissue absorption for drug delivery devices.
    McGinty S; Pontrelli G
    J Control Release; 2015 Nov; 217():327-36. PubMed ID: 26390809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Physicochemical interpretation of the pharmacokinetics of percutaneous absorption.
    Guy RH; Hadgraft J
    J Pharmacokinet Biopharm; 1983 Apr; 11(2):189-203. PubMed ID: 6886974
    [TBL] [Abstract][Full Text] [Related]  

  • 9. In silico predictions of gastrointestinal drug absorption in pharmaceutical product development: application of the mechanistic absorption model GI-Sim.
    Sjögren E; Westergren J; Grant I; Hanisch G; Lindfors L; Lennernäs H; Abrahamsson B; Tannergren C
    Eur J Pharm Sci; 2013 Jul; 49(4):679-98. PubMed ID: 23727464
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Application of numerical methods for diffusion-based modeling of skin permeation.
    Frasch HF; Barbero AM
    Adv Drug Deliv Rev; 2013 Feb; 65(2):208-20. PubMed ID: 22261307
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Experimental determination of the diffusion boundary layer width of micron and submicron particles.
    Galli C
    Int J Pharm; 2006 Apr; 313(1-2):114-22. PubMed ID: 16529883
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A theoretical consideration of percutaneous drug absorption.
    Kubota K; Ishizaki T
    J Pharmacokinet Biopharm; 1985 Feb; 13(1):55-72. PubMed ID: 4020622
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mathematical models to describe iontophoretic transport in vitro and in vivo and the effect of current application on the skin barrier.
    Gratieri T; Kalia YN
    Adv Drug Deliv Rev; 2013 Feb; 65(2):315-29. PubMed ID: 22626977
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Dynamics of dissolution and diffusion-controlled drug release systems.
    Simon L; Bolisetty P; Erazo MN
    Curr Drug Deliv; 2011 Mar; 8(2):144-51. PubMed ID: 21235474
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Combined effects of iontophoretic and chemical enhancement on drug delivery. II. Transport across human and murine skin.
    Nolan LM; Corish J; Corrigan OI; Fitzpatrick D
    Int J Pharm; 2007 Aug; 341(1-2):114-24. PubMed ID: 17502130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Local controlled drug delivery to the brain: mathematical modeling of the underlying mass transport mechanisms.
    Siepmann J; Siepmann F; Florence AT
    Int J Pharm; 2006 May; 314(2):101-19. PubMed ID: 16647231
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Vehicle effects in percutaneous absorption.
    Idson B
    Drug Metab Rev; 1983; 14(2):207-22. PubMed ID: 6341025
    [No Abstract]   [Full Text] [Related]  

  • 18. Evolution of supersaturation of amorphous pharmaceuticals: nonlinear rate of supersaturation generation regulated by matrix diffusion.
    Sun DD; Lee PI
    Mol Pharm; 2015 Apr; 12(4):1203-15. PubMed ID: 25775257
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Controlling release from encapsulated drug-loaded devices: insights from modeling the dissolution front propagation.
    Jain A; King D; Pontrelli G; McGinty S
    J Control Release; 2023 Aug; 360():225-235. PubMed ID: 37328006
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mixing-tank model for predicting dissolution rate control or oral absorption.
    Dressman JB; Fleisher D
    J Pharm Sci; 1986 Feb; 75(2):109-16. PubMed ID: 3958917
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.