These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 8747674)

  • 41. Reduction of periodontal pathogens adhesion by antagonistic strains.
    Van Hoogmoed CG; Geertsema-Doornbusch GI; Teughels W; Quirynen M; Busscher HJ; Van der Mei HC
    Oral Microbiol Immunol; 2008 Feb; 23(1):43-8. PubMed ID: 18173797
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Susceptibility of oral bacteria to phenoxyethanol and phenoxyethanol/chlorhexidine combinations.
    Wilson M; Bansal G; Stanley A; Newman HN
    J Periodontol; 1990 Aug; 61(8):536-41. PubMed ID: 2202809
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Antibacterial effect of different concentrations of garlic (Allium sativum) extract on dental plaque bacteria.
    Houshmand B; Mahjour F; Dianat O
    Indian J Dent Res; 2013; 24(1):71-5. PubMed ID: 23852236
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Suppuration-associated bacteria in patients with chronic and aggressive periodontitis.
    Silva-Boghossian CM; Neves AB; Resende FA; Colombo AP
    J Periodontol; 2013 Sep; 84(9):e9-e16. PubMed ID: 23327648
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Antibacterial effects of amalgams on mutans streptococci in an in vitro biofilm test procedure.
    Netuschil L; Vohrer KG; Riethe P; Kasloff Z; Brecx M
    Acta Stomatol Belg; 1996 Jun; 93(2):73-8. PubMed ID: 9253207
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Growth-inhibitory effect of pyrophosphate on oral bacteria.
    Drake D; Grigsby B; Krotz-Dieleman D
    Oral Microbiol Immunol; 1994 Feb; 9(1):25-8. PubMed ID: 7478751
    [TBL] [Abstract][Full Text] [Related]  

  • 47. The effect of intensive antibacterial therapy on the sulcular environment in monkeys. Part I. Changes in the bacteriology of the gingival sulcus.
    Kornman KS; Caffesse RG; Nasjleti CE
    J Periodontol; 1980 Jan; 51(1):34-8. PubMed ID: 6102117
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [The effect of zinc chloride mouthwashes on caries-inducing plaque streptococci. 3. The antibacterial effect of zinc chloride on the species Str. mutans, Str. sanguis and Str. salivarius in dental plaque].
    Nossek H; Dobl P
    Zahn Mund Kieferheilkd Zentralbl; 1990; 78(6):501-5. PubMed ID: 2149904
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Susceptibility of some plaque microorganisms to chemotherapeutic agents.
    Newbrun E; Felton RA; Bulkacz J
    J Dent Res; 1976; 55(4):574-9. PubMed ID: 1064600
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis.
    Mulligan AM; Wilson M; Knowles JC
    Biomaterials; 2003 May; 24(10):1797-807. PubMed ID: 12593962
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Saliva mediated adherence, aggregation and prevalence in dental plaque of Streptococcus mutans, Streptococcus sanguis and Actinomyces spp, in young and elderly humans.
    Carlén A; Olsson J; Ramberg P
    Arch Oral Biol; 1996 Dec; 41(12):1133-40. PubMed ID: 9134102
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Antibacterial properties of five dental amalgams: an in vitro study.
    Morrier JJ; Barsotti O; Blanc-Benon J; Rocca JP; Dumont J
    Dent Mater; 1989 Sep; 5(5):310-3. PubMed ID: 2638276
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Protein degradation by Prevotella intermedia and Actinomyces meyeri supports the growth of non-protein-cleaving oral bacteria in serum.
    Jansen HJ; van der Hoeven JS
    J Clin Periodontol; 1997 May; 24(5):346-53. PubMed ID: 9178115
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Relationship between dental plaque indices and bacteria in dental plaque and those in saliva.
    Schaeken MJ; Creugers TJ; Van der Hoeven JS
    J Dent Res; 1987 Sep; 66(9):1499-502. PubMed ID: 3476622
    [TBL] [Abstract][Full Text] [Related]  

  • 55. The effect of amalgam exposure on mercury- and antibiotic-resistant bacteria.
    Ready D; Pratten J; Mordan N; Watts E; Wilson M
    Int J Antimicrob Agents; 2007 Jul; 30(1):34-9. PubMed ID: 17459664
    [TBL] [Abstract][Full Text] [Related]  

  • 56. The efficacy of povidone-iodine products against periodontopathic bacteria.
    Nakagawa T; Hosaka Y; Ishihara K; Hiraishi T; Sato S; Ogawa T; Kamoi K
    Dermatology; 2006; 212 Suppl 1():109-11. PubMed ID: 16490986
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Antibacterial activity of hinokitiol against both antibiotic-resistant and -susceptible pathogenic bacteria that predominate in the oral cavity and upper airways.
    Domon H; Hiyoshi T; Maekawa T; Yonezawa D; Tamura H; Kawabata S; Yanagihara K; Kimura O; Kunitomo E; Terao Y
    Microbiol Immunol; 2019 Jun; 63(6):213-222. PubMed ID: 31106894
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Microbial composition of supra- and subgingival plaque in subjects with adult periodontitis.
    Ximénez-Fyvie LA; Haffajee AD; Socransky SS
    J Clin Periodontol; 2000 Oct; 27(10):722-32. PubMed ID: 11034118
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Antimicrobial activity produced by six dentifrices.
    Settembrini L; Gultz J; Boylan R; Scherer W
    Gen Dent; 1998; 46(3):286-8. PubMed ID: 9693543
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Antibacterial properties of one conventional and three high-copper dental amalgams.
    Glassman MD; Miller IJ
    J Prosthet Dent; 1984 Aug; 52(2):199-203. PubMed ID: 6590839
    [No Abstract]   [Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.