These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
7. Sensitive detection of noise-induced damage in human subjects using transiently evoked otoacoustic emissions. Xu ZM; Van Cauwenberge P; Vinck B; De Vel E Acta Otorhinolaryngol Belg; 1998; 52(1):19-24. PubMed ID: 9581192 [TBL] [Abstract][Full Text] [Related]
8. Otoacoustic emissions in ears with hearing loss. Probst R; Lonsbury-Martin BL; Martin GK; Coats AC Am J Otolaryngol; 1987; 8(2):73-81. PubMed ID: 3592079 [TBL] [Abstract][Full Text] [Related]
9. Click- and tone-burst-evoked otoacoustic emissions in normally hearing ears and in ears with high-frequency sensorineural hearing loss. Hauser R; Probst R; Löhle E Eur Arch Otorhinolaryngol; 1991; 248(6):345-52. PubMed ID: 1930984 [TBL] [Abstract][Full Text] [Related]
10. Tone-burst and click-evoked otoacoustic emissions in subjects with hearing loss above 0.25, 0.5, and 1 kHz. Jedrzejczak WW; Kochanek K; Trzaskowski B; Pilka E; Skarzynski PH; Skarzynski H Ear Hear; 2012; 33(6):757-67. PubMed ID: 22710662 [TBL] [Abstract][Full Text] [Related]
11. The role of transient-evoked otoacoustic emission testing in the evaluation of elderly persons. Bertoli S; Probst R Ear Hear; 1997 Aug; 18(4):286-93. PubMed ID: 9288474 [TBL] [Abstract][Full Text] [Related]
12. Effects of lifetime noise exposure on the middle-age human auditory brainstem response, tinnitus and speech-in-noise intelligibility. Valderrama JT; Beach EF; Yeend I; Sharma M; Van Dun B; Dillon H Hear Res; 2018 Aug; 365():36-48. PubMed ID: 29913342 [TBL] [Abstract][Full Text] [Related]
13. Transient evoked otoacoustic emissions in patients with normal hearing and in patients with hearing loss. Hussain DM; Gorga MP; Neely ST; Keefe DH; Peters J Ear Hear; 1998 Dec; 19(6):434-49. PubMed ID: 9867292 [TBL] [Abstract][Full Text] [Related]
14. Transient-evoked otoacoustic emissions as a measure of noise-induced threshold shift. Marshall L; Heller LM J Speech Lang Hear Res; 1998 Dec; 41(6):1319-34. PubMed ID: 9859887 [TBL] [Abstract][Full Text] [Related]
16. Effect of ipsilateral and contralateral low-frequency narrow-band noise on temporary threshold shift in humans. Quaranta A; Scaringi A; Fernandez-Vega S; Quaranta N Acta Otolaryngol; 2003 Jan; 123(2):164-7. PubMed ID: 12701733 [TBL] [Abstract][Full Text] [Related]
17. "Linear" and "derived" otoacoustic emissions in newborns: a comparative study. Tognola G; Ravazzani P; Molini E; Ricci G; Alunni N; Parazzini M; Grandori F Ear Hear; 2001 Jun; 22(3):182-90. PubMed ID: 11409854 [TBL] [Abstract][Full Text] [Related]
18. Click-evoked otoacoustic emissions and the influence of high-frequency hearing losses in humans. Avan P; Elbez M; Bonfils P J Acoust Soc Am; 1997 May; 101(5 Pt 1):2771-7. PubMed ID: 9165731 [TBL] [Abstract][Full Text] [Related]
19. Predicting hearing thresholds in occupational noise-induced hearing loss by auditory steady state responses. Attias J; Karawani H; Shemesh R; Nageris B Ear Hear; 2014; 35(3):330-8. PubMed ID: 24509531 [TBL] [Abstract][Full Text] [Related]
20. Measurements of click-evoked otoacoustic emission in industrial workers with noise-induced hearing loss. Kowalska S; Sułkowski W Int J Occup Med Environ Health; 1997; 10(4):441-59. PubMed ID: 9575669 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]