These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

163 related articles for article (PubMed ID: 8747967)

  • 1. Clinical syndromes associated with disproportionate weakness of the upper versus the lower extremities after cervical spinal cord injury.
    Levi AD; Tator CH; Bunge RP
    Neurosurgery; 1996 Jan; 38(1):179-83; discussion 183-5. PubMed ID: 8747967
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A critical reappraisal of corticospinal tract somatotopy and its role in traumatic cervical spinal cord syndromes.
    Levi AD; Schwab JM
    J Neurosurg Spine; 2022 Apr; 36(4):653-659. PubMed ID: 34767532
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A histopathological analysis of the human cervical spinal cord in patients with acute traumatic central cord syndrome.
    Jimenez O; Marcillo A; Levi AD
    Spinal Cord; 2000 Sep; 38(9):532-7. PubMed ID: 11035473
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The evidence against somatotopic organization of function in the primate corticospinal tract.
    Lemon RN; Morecraft RJ
    Brain; 2023 May; 146(5):1791-1803. PubMed ID: 36575147
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Acute traumatic central cord syndrome: magnetic resonance imaging and clinical observations.
    Collignon F; Martin D; Lénelle J; Stevenaert A
    J Neurosurg; 2002 Jan; 96(1 Suppl):29-33. PubMed ID: 11795711
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modulation of corticospinal input to the legs by arm and leg cycling in people with incomplete spinal cord injury.
    Zhou R; Alvarado L; Kim S; Chong SL; Mushahwar VK
    J Neurophysiol; 2017 Oct; 118(4):2507-2519. PubMed ID: 28701544
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lack of somatotopy among corticospinal tract fibers passing through the primate craniovertebral junction and cervical spinal cord: pathoanatomical substrate of central cord syndrome and cruciate paralysis.
    Morecraft RJ; Stilwell-Morecraft KS; Ge J; Kraskov A; Lemon RN
    J Neurosurg; 2022 May; 136(5):1395-1409. PubMed ID: 34624846
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cruciate paralysis caused by injury of the upper cervical spine.
    Dai L; Jia L; Xu Y; Zhang W
    J Spinal Disord; 1995 Apr; 8(2):170-2. PubMed ID: 7606127
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A novel cortical target to enhance hand motor output in humans with spinal cord injury.
    Long J; Federico P; Perez MA
    Brain; 2017 Jun; 140(6):1619-1632. PubMed ID: 28549131
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous corticospinal axonal plasticity and functional recovery after adult central nervous system injury.
    Weidner N; Ner A; Salimi N; Tuszynski MH
    Proc Natl Acad Sci U S A; 2001 Mar; 98(6):3513-8. PubMed ID: 11248109
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Quantitative assessment of forelimb motor function after cervical spinal cord injury in rats: relationship to the corticospinal tract.
    Anderson KD; Gunawan A; Steward O
    Exp Neurol; 2005 Jul; 194(1):161-74. PubMed ID: 15899253
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Acute central cervical cord injury presenting with only upper extremity involvement.
    Dai L; Jia L
    Int Orthop; 1997; 21(6):380-2. PubMed ID: 9498147
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Neurographic assessment of intramedullary motoneurone lesions in cervical spinal cord injury: consequences for hand function.
    Curt A; Dietz V
    Spinal Cord; 1996 Jun; 34(6):326-32. PubMed ID: 8963985
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A unilateral section of the corticospinal tract at cervical level in primate does not lead to measurable cell loss in motor cortex.
    Wannier T; Schmidlin E; Bloch J; Rouiller EM
    J Neurotrauma; 2005 Jun; 22(6):703-17. PubMed ID: 15941378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Changes in corticospinal facilitation of lower limb spinal motor neurons after spinal cord lesions.
    Brouwer B; Bugaresti J; Ashby P
    J Neurol Neurosurg Psychiatry; 1992 Jan; 55(1):20-4. PubMed ID: 1312579
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Motor cortex and spinal cord neuromodulation promote corticospinal tract axonal outgrowth and motor recovery after cervical contusion spinal cord injury.
    Zareen N; Shinozaki M; Ryan D; Alexander H; Amer A; Truong DQ; Khadka N; Sarkar A; Naeem S; Bikson M; Martin JH
    Exp Neurol; 2017 Nov; 297():179-189. PubMed ID: 28803750
    [TBL] [Abstract][Full Text] [Related]  

  • 17. ["Paralysis cruciata"--a rare brain stem lesion syndrome after cervical vertebrae trauma].
    Prestar FJ; Keidel M
    Nervenarzt; 1993 Jun; 64(6):396-400. PubMed ID: 8332232
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potentiating paired corticospinal-motoneuronal plasticity after spinal cord injury.
    Bunday KL; Urbin MA; Perez MA
    Brain Stimul; 2018; 11(5):1083-1092. PubMed ID: 29848448
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Task-dependent compensation after pyramidal tract and dorsolateral spinal lesions in rats.
    Kanagal SG; Muir GD
    Exp Neurol; 2009 Mar; 216(1):193-206. PubMed ID: 19118552
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cruciate paralysis: a clinical and radiographic analysis of injuries to the cervicomedullary junction.
    Dickman CA; Hadley MN; Pappas CT; Sonntag VK; Geisler FH
    J Neurosurg; 1990 Dec; 73(6):850-8. PubMed ID: 2230968
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.