These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 8748530)

  • 1. Energy comparison between trot, bound, and gallop using a simple model.
    Nanua P; Waldron KJ
    J Biomech Eng; 1995 Nov; 117(4):466-73. PubMed ID: 8748530
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A stability-based mechanism for hysteresis in the walk-trot transition in quadruped locomotion.
    Aoi S; Katayama D; Fujiki S; Tomita N; Funato T; Yamashita T; Senda K; Tsuchiya K
    J R Soc Interface; 2013 Apr; 10(81):20120908. PubMed ID: 23389894
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A galloping quadruped model using left-right asymmetry in touchdown angles.
    Tanase M; Ambe Y; Aoi S; Matsuno F
    J Biomech; 2015 Sep; 48(12):3383-9. PubMed ID: 26216144
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A mechanical trigger for the trot-gallop transition in horses.
    Farley CT; Taylor CR
    Science; 1991 Jul; 253(5017):306-8. PubMed ID: 1857965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The energetics of the trot-gallop transition.
    Wickler SJ; Hoyt DF; Cogger EA; Myers G
    J Exp Biol; 2003 May; 206(Pt 9):1557-64. PubMed ID: 12654894
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Generating high-speed dynamic running gaits in a quadruped robot using an evolutionary search.
    Krasny DP; Orin DE
    IEEE Trans Syst Man Cybern B Cybern; 2004 Aug; 34(4):1685-96. PubMed ID: 15462436
    [TBL] [Abstract][Full Text] [Related]  

  • 7. An inelastic quadrupedal model discovers four-beat walking, two-beat running, and pseudo-elastic actuation as energetically optimal.
    Polet DT; Bertram JEA
    PLoS Comput Biol; 2019 Nov; 15(11):e1007444. PubMed ID: 31751339
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fifteen observations on the structure of energy-minimizing gaits in many simple biped models.
    Srinivasan M
    J R Soc Interface; 2011 Jan; 8(54):74-98. PubMed ID: 20542957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Horse-like walking, trotting, and galloping derived from kinematic Motion Primitives (kMPs) and their application to walk/trot transitions in a compliant quadruped robot.
    Moro FL; Spröwitz A; Tuleu A; Vespignani M; Tsagarakis NG; Ijspeert AJ; Caldwell DG
    Biol Cybern; 2013 Jun; 107(3):309-20. PubMed ID: 23463501
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Gait characterisation and classification in horses.
    Robilliard JJ; Pfau T; Wilson AM
    J Exp Biol; 2007 Jan; 210(Pt 2):187-97. PubMed ID: 17210956
    [TBL] [Abstract][Full Text] [Related]  

  • 11. What are the relations between mechanics, gait parameters, and energetics in terrestrial locomotion?
    Hoyt DF; Wickler SJ; Dutto DJ; Catterfeld GE; Johnsen D
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):912-22. PubMed ID: 17029281
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Motions of the running horse and cheetah revisited: fundamental mechanics of the transverse and rotary gallop.
    Bertram JE; Gutmann A
    J R Soc Interface; 2009 Jun; 6(35):549-59. PubMed ID: 18854295
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Gait transitions during unrestrained locomotion in dogs.
    Blaszczyk JW
    Equine Vet J Suppl; 2001 Apr; (33):112-5. PubMed ID: 11721550
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Models of central pattern generators for quadruped locomotion. II. Secondary gaits.
    Buono PL
    J Math Biol; 2001 Apr; 42(4):327-46. PubMed ID: 11374123
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Whole-body mechanics and gaits in the gray short-tailed opossum Monodelphis domestica: integrating patterns of locomotion in a semi-erect mammal.
    Parchman AJ; Reilly SM; Biknevicius AR
    J Exp Biol; 2003 Apr; 206(Pt 8):1379-88. PubMed ID: 12624172
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The biomechanics of skipping gaits: a third locomotion paradigm?
    Minetti AE
    Proc Biol Sci; 1998 Jul; 265(1402):1227-35. PubMed ID: 9699315
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of the gait generation principle by a simulated quadruped model with a CPG incorporating vestibular modulation.
    Fukuoka Y; Habu Y; Fukui T
    Biol Cybern; 2013 Dec; 107(6):695-710. PubMed ID: 24132783
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A collisional perspective on quadrupedal gait dynamics.
    Lee DV; Bertram JE; Anttonen JT; Ros IG; Harris SL; Biewener AA
    J R Soc Interface; 2011 Oct; 8(63):1480-6. PubMed ID: 21471189
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Comparison of the morphology of the limbs of juvenile and adult horses (Equus caballus) and their implications on the locomotor biomechanics.
    Grossi B; Canals M
    J Exp Zool A Ecol Genet Physiol; 2010 Jun; 313(5):292-300. PubMed ID: 20213826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Body torsional flexibility effects on stability during trotting and pacing based on a simple analytical model.
    Adachi M; Aoi S; Kamimura T; Tsuchiya K; Matsuno F
    Bioinspir Biomim; 2020 Jul; 15(5):055001. PubMed ID: 32454464
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.