These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

194 related articles for article (PubMed ID: 8748530)

  • 21. Models of central pattern generators for quadruped locomotion. I. Primary gaits.
    Buono PL; Golubitsky M
    J Math Biol; 2001 Apr; 42(4):291-326. PubMed ID: 11374122
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Adaptive value of ambling gaits in primates and other mammals.
    Schmitt D; Cartmill M; Griffin TM; Hanna JB; Lemelin P
    J Exp Biol; 2006 Jun; 209(Pt 11):2042-9. PubMed ID: 16709907
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Speed, stride frequency and energy cost per stride: how do they change with body size and gait?
    Heglund NC; Taylor CR
    J Exp Biol; 1988 Sep; 138():301-18. PubMed ID: 3193059
    [TBL] [Abstract][Full Text] [Related]  

  • 24. What explains the trot-gallop transition in small mammals?
    Iriarte-Díaz J; Bozinovic F; Vásquez RA
    J Exp Biol; 2006 Oct; 209(Pt 20):4061-6. PubMed ID: 17023600
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Compliant leg behaviour explains basic dynamics of walking and running.
    Geyer H; Seyfarth A; Blickhan R
    Proc Biol Sci; 2006 Nov; 273(1603):2861-7. PubMed ID: 17015312
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Spatio-temporal gait characteristics during transitions from trot to canter in horses.
    Nauwelaerts S; Aerts P; Clayton H
    Zoology (Jena); 2013 Aug; 116(4):197-204. PubMed ID: 23810157
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Patterns of mechanical energy change in tetrapod gait: pendula, springs and work.
    Biewener AA
    J Exp Zool A Comp Exp Biol; 2006 Nov; 305(11):899-911. PubMed ID: 17029267
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Walking and running in the red-legged running frog, Kassina maculata.
    Ahn AN; Furrow E; Biewener AA
    J Exp Biol; 2004 Jan; 207(Pt 3):399-410. PubMed ID: 14691087
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Biomechanical and energetic determinants of the walk-trot transition in horses.
    Griffin TM; Kram R; Wickler SJ; Hoyt DF
    J Exp Biol; 2004 Nov; 207(Pt 24):4215-23. PubMed ID: 15531642
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Planar Covariation of Hindlimb and Forelimb Elevation Angles during Terrestrial and Aquatic Locomotion of Dogs.
    Catavitello G; Ivanenko YP; Lacquaniti F
    PLoS One; 2015; 10(7):e0133936. PubMed ID: 26218076
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Posture, gait and the ecological relevance of locomotor costs and energy-saving mechanisms in tetrapods.
    Reilly SM; McElroy EJ; Biknevicius AR
    Zoology (Jena); 2007; 110(4):271-89. PubMed ID: 17482802
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Energy evaluation of a bio-inspired gait modulation method for quadrupedal locomotion.
    Fukuoka Y; Fukino K; Habu Y; Mori Y
    Bioinspir Biomim; 2015 Aug; 10(4):046017. PubMed ID: 26241690
    [TBL] [Abstract][Full Text] [Related]  

  • 33. An extension to the collisional model of the energetic cost of support qualitatively explains trotting and the trot-canter transition.
    Usherwood JR
    J Exp Zool A Ecol Integr Physiol; 2020 Jan; 333(1):9-19. PubMed ID: 31033243
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Gait selection in the ostrich: mechanical and metabolic characteristics of walking and running with and without an aerial phase.
    Rubenson J; Heliams DB; Lloyd DG; Fournier PA
    Proc Biol Sci; 2004 May; 271(1543):1091-9. PubMed ID: 15293864
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Comparative biokinematic study of young and adult Andalusian horses at the trot.
    Cano MR; Miró F; Vivo J; Galisteo AM
    Zentralbl Veterinarmed A; 1999 Mar; 46(2):91-101. PubMed ID: 10216446
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Speed control in animal locomotion: transitions between symmetrical and nonsymmetrical gaits in the dog.
    Afelt Z; Błaszczyk J; Dobrzecka C
    Acta Neurobiol Exp (Wars); 1983; 43(4-5):235-50. PubMed ID: 6660051
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Locomotion evaluation for racing in thoroughbreds.
    Barrey E; Evans SE; Evans DL; Curtis RA; Quinton R; Rose RJ
    Equine Vet J Suppl; 2001 Apr; (33):99-103. PubMed ID: 11721580
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Preferred and energetically optimal gait transition speeds in human locomotion.
    Hreljac A
    Med Sci Sports Exerc; 1993 Oct; 25(10):1158-62. PubMed ID: 8231761
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Trotting, pacing and bounding by a quadruped robot.
    Raibert MH
    J Biomech; 1990; 23 Suppl 1():79-98. PubMed ID: 2081747
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Velocity-dependent changes of time, force and spatial parameters in Warmblood horses walking and trotting on a treadmill.
    Weishaupt MA; Hogg HP; Auer JA; Wiestner T
    Equine Vet J Suppl; 2010 Nov; (38):530-7. PubMed ID: 21059056
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.