These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 874863)

  • 1. Reduction of the duration of isovolumic relaxation in the ejecting left ventricle of the dog: residual volume clamping.
    Suga H; Yamakoshi KI
    J Physiol; 1977 May; 267(1):63-74. PubMed ID: 874863
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Long-term versus intrabeat history of ejection as determinants of canine ventricular end-systolic pressure.
    Sugiura S; Hunter WC; Sagawa K
    Circ Res; 1989 Feb; 64(2):255-64. PubMed ID: 2912597
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of stroke volume and velocity of ejection on end-systolic pressure of canine left ventricle. End-systolic volume clamping.
    Suga H; Yamakoshi K
    Circ Res; 1977 May; 40(5):445-50. PubMed ID: 856481
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Hemodynamic determinants of the time-course of fall in canine left ventricular pressure.
    Weiss JL; Frederiksen JW; Weisfeldt ML
    J Clin Invest; 1976 Sep; 58(3):751-60. PubMed ID: 956400
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characteristics of left-ventricular isovolumic pressure waves in isolated dog hearts.
    Regen DM; Denton PK; Howe WC; Taylor LK; Hansen DE
    Heart Vessels; 1994; 9(3):155-66. PubMed ID: 8056722
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ejection timing as a major determinant of left ventricular relaxation rate in isolated perfused canine heart.
    Hori M; Inoue M; Kitakaze M; Tsujioka K; Ishida Y; Fukunami M; Nakajima S; Kitabatake A; Abe H
    Circ Res; 1984 Jul; 55(1):31-8. PubMed ID: 6744526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Delayed end ejection increases isovolumic ventricular relaxation rate in isolated perfused canine hearts.
    Hori M; Kitakaze M; Ishida Y; Fukunami M; Kitabatake A; Inoue M; Kamada T; Yue DT
    Circ Res; 1991 Jan; 68(1):300-8. PubMed ID: 1984870
    [TBL] [Abstract][Full Text] [Related]  

  • 8. End-systolic pressure as a balance between opposing effects of ejection.
    Hunter WC
    Circ Res; 1989 Feb; 64(2):265-75. PubMed ID: 2912598
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Equal oxygen consumption rates of isovolumic and ejecting contractions with equal systolic pressure-volume areas in canine left ventricle.
    Suga H; Hayashi T; Suehiro S; Hisano R; Shirahata M; Ninomiya I
    Circ Res; 1981 Nov; 49(5):1082-91. PubMed ID: 7296776
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characteristics of single isovolumic left-ventricular pressure waves of dog hearts in situ.
    Regen DM; Howe WC; Peterson JT; Little WC
    Heart Vessels; 1993; 8(3):136-48. PubMed ID: 8407723
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hemodynamic effects of direct biventricular compression studied in isovolumic and ejecting isolated canine hearts.
    Artrip JH; Wang J; Leventhal AR; Tsitlik JE; Levin HR; Burkhoff D
    Circulation; 1999 Apr; 99(16):2177-84. PubMed ID: 10217660
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Force-time integral decreases with ejection despite constant oxygen consumption and pressure-volume area in dog left ventricle.
    Suga H; Goto Y; Nozawa T; Yasumura Y; Futaki S; Tanaka N
    Circ Res; 1987 Jun; 60(6):797-803. PubMed ID: 3594752
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Mechanoelectrical feedback effects of altering preload, afterload, and ventricular shortening.
    Hansen DE
    Am J Physiol; 1993 Feb; 264(2 Pt 2):H423-32. PubMed ID: 8447458
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of early diastolic loading on myocardial relaxation in the intact canine left ventricle.
    Nikolic S; Yellin EL; Tamura K; Tamura T; Frater RW
    Circ Res; 1990 May; 66(5):1217-26. PubMed ID: 2335022
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Left ventricle as a compression pump.
    Suga H; Yamakoshi KI
    Eur J Cardiol; 1976 May; 4 Suppl():97-103. PubMed ID: 1278223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Left ventricular ejection activation in the in situ heart.
    Igarashi Y; Cheng CP; Little WC
    Am J Physiol; 1991 May; 260(5 Pt 2):H1495-500. PubMed ID: 2035671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Inotropic effects of ejection are myocardial properties.
    De Tombe PP; Little WC
    Am J Physiol; 1994 Mar; 266(3 Pt 2):H1202-13. PubMed ID: 8160824
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Impact of ejection on magnitude and time course of ventricular pressure-generating capacity.
    Burkhoff D; De Tombe PP; Hunter WC
    Am J Physiol; 1993 Sep; 265(3 Pt 2):H899-909. PubMed ID: 8214125
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Contractile strength and mechanical efficiency of left ventricle are enhanced by physiological afterload.
    Burkhoff D; de Tombe PP; Hunter WC; Kass DA
    Am J Physiol; 1991 Feb; 260(2 Pt 2):H569-78. PubMed ID: 1996700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relaxation time constant of isolated rabbit left ventricle.
    Schiereck P; Nieuwenhuijs JH; de Beer EL; van Hessen MW; van Kaam FA; Crowe A
    Am J Physiol; 1987 Sep; 253(3 Pt 2):H512-8. PubMed ID: 3631288
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.