These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
82 related articles for article (PubMed ID: 8748988)
1. Physiological studies of visual cortex reorganization following cortical deafferentation in neonatal cats. Yinon U; Shemesh R; Arda H; Rosner M; Jaros PP Can J Physiol Pharmacol; 1995 Sep; 73(9):1378-88. PubMed ID: 8748988 [TBL] [Abstract][Full Text] [Related]
2. The deafferented visual cortex: neuronal activity and visual evoked potentials. Yinon U; Podell M; Achiron A; Weiser Z Int J Neurosci; 1987 Mar; 33(1-2):85-91. PubMed ID: 3610495 [TBL] [Abstract][Full Text] [Related]
3. Unilateral visual cortex deafferentation induces changes in receptive field properties of cortical cells in the intact hemisphere of normal and of monocularly deprived cats. Yinon U; Podell M Brain Res; 1987 Jun; 430(2):205-13. PubMed ID: 3607513 [TBL] [Abstract][Full Text] [Related]
4. Isochronic transplantation of neonatal grafts in the visual cortex of cats: responsiveness, ocular dominance and specificity of cortical cells to visual stimulation. Yinon U; Gelerstein S Exp Brain Res; 1991; 87(1):181-92. PubMed ID: 1756824 [TBL] [Abstract][Full Text] [Related]
5. Electrophysiological studies on the effects on single cells of silver electrodes implanted in the visual cortex of cats. Spivak I; Yinon U; Yanko L; Shefer Y Metab Pediatr Syst Ophthalmol (1985); 1998; 21(1-4):1-5. PubMed ID: 11548788 [TBL] [Abstract][Full Text] [Related]
6. Physiological studies in deafferented visual cortex cells of cats following transplantation of fetal xenografts from the rat's cortex. Yinon U; Shemesh R; Arda H; Dobin G; Jaros PP Exp Neurol; 1993 Aug; 122(2):335-41. PubMed ID: 8405270 [TBL] [Abstract][Full Text] [Related]
7. Properties of visual cortical cells of the intact and the deafferented hemisphere of unilateral optic tract sectioned acute and chronic adult cats. Podell M; Yinon U; Hammer A Exp Brain Res; 1984; 55(1):91-6. PubMed ID: 6086374 [TBL] [Abstract][Full Text] [Related]
8. Columnar organization of the mammalian visual cortex and its vulnerability following lesion in adult cats. Gurshumov N; Yinon U Brain Inj; 2005 Jun; 19(6):451-7. PubMed ID: 16101267 [TBL] [Abstract][Full Text] [Related]
9. Unilateral interruption of geniculate and callosal inputs to the visual cortex of cats: ocular dominance and responsiveness of cells in the deafferented and in the intact hemispheres. Yinon U; Achiron A Exp Neurol; 1988 Mar; 99(3):579-88. PubMed ID: 3342840 [TBL] [Abstract][Full Text] [Related]
10. Adult plasticity in the visual system. Chino YM Can J Physiol Pharmacol; 1995 Sep; 73(9):1323-38. PubMed ID: 8748982 [TBL] [Abstract][Full Text] [Related]
11. Delayed reorganization of the shoulder representation in forepaw barrel subfield (FBS) in first somatosensory cortex (SI) following forelimb deafferentation in adult rats. Pearson PP; Li CX; Chappell TD; Waters RS Exp Brain Res; 2003 Nov; 153(1):100-12. PubMed ID: 12955377 [TBL] [Abstract][Full Text] [Related]
12. Evidence for long-term functional plasticity in the visual cortex of adult cats. Singer W; Tretter F; Yinon U J Physiol; 1982 Mar; 324():239-48. PubMed ID: 7097599 [TBL] [Abstract][Full Text] [Related]
13. The period of susceptibility of visual cortical binocularity to unilateral proprioceptive deafferentation of extraocular muscles. Trotter Y; Frégnac Y; Buisseret P J Neurophysiol; 1987 Oct; 58(4):795-815. PubMed ID: 3681396 [TBL] [Abstract][Full Text] [Related]
14. Binocularity and excitability loss in visual cortex cells of corpus callosum transected kittens and cats. Yinon U; Chen M; Gelerstein S Brain Res Bull; 1992 Nov; 29(5):541-52. PubMed ID: 1422852 [TBL] [Abstract][Full Text] [Related]
15. Cross-modal reorganization of cortical afferents to dorsal auditory cortex following early- and late-onset deafness. Kok MA; Chabot N; Lomber SG J Comp Neurol; 2014 Feb; 522(3):654-75. PubMed ID: 23897533 [TBL] [Abstract][Full Text] [Related]
16. Effect of sensory deafferentation on immunoreactivity of GABAergic cells and on GABA receptors in the adult cat visual cortex. Rosier AM; Arckens L; Demeulemeester H; Orban GA; Eysel UT; Wu YJ; Vandesande F J Comp Neurol; 1995 Aug; 359(3):476-89. PubMed ID: 7499542 [TBL] [Abstract][Full Text] [Related]
17. On the question of neuronal plasticity in the mature visual cortex. Yinon U Arch Ital Biol; 1978 Sep; 116(3-4):325-9. PubMed ID: 749711 [TBL] [Abstract][Full Text] [Related]
18. The deafferented visual cortex and interhemispheric relationships: a physiological approach. Yinon U; Podell M Metab Pediatr Syst Ophthalmol (1985); 1988; 11(1-2):100-10. PubMed ID: 3076606 [TBL] [Abstract][Full Text] [Related]
19. Neural plasticity maintained high by activation of cyclic AMP-dependent protein kinase: an age-independent, general mechanism in cat striate cortex. Imamura K; Kasamatsu T; Tanaka S Neuroscience; 2007 Jun; 147(2):508-21. PubMed ID: 17544224 [TBL] [Abstract][Full Text] [Related]
20. Influence of callosal transfer on visual cortical evoked response and the implication in the development of a visual prosthesis. Siu TL; Morley JW Graefes Arch Clin Exp Ophthalmol; 2007 Dec; 245(12):1797-803. PubMed ID: 17638003 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]