BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 8749250)

  • 1. Separation and characterization of red blood cells with different membrane deformability using steric field-flow fractionation.
    Tong X; Caldwell KD
    J Chromatogr B Biomed Appl; 1995 Dec; 674(1):39-47. PubMed ID: 8749250
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Separation of red blood cells by field flow fractionation.
    Andreux JP; Merino A; Renard M; Forestier F; Cardot P
    Exp Hematol; 1993 Feb; 21(2):326-30. PubMed ID: 8425568
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Separation of human and animal cells by steric field-flow fractionation.
    Caldwell KD; Cheng ZQ; Hradecky P; Giddings JC
    Cell Biophys; 1984 Dec; 6(4):233-51. PubMed ID: 6085558
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isolation and quantitation of human erythrocyte deformability classes.
    Acquaye C; Johnson RM
    J Lab Clin Med; 1990 Oct; 116(4):448-56. PubMed ID: 2212854
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Sensing of red blood cells with decreased membrane deformability by the human spleen.
    Safeukui I; Buffet PA; Deplaine G; Perrot S; Brousse V; Sauvanet A; Aussilhou B; Dokmak S; Couvelard A; Cazals-Hatem D; Mercereau-Puijalon O; Milon G; David PH; Mohandas N
    Blood Adv; 2018 Oct; 2(20):2581-2587. PubMed ID: 30305267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Centrifugal method of determining red cell deformability.
    Corry WD; Meiselman HJ
    Blood; 1978 Apr; 51(4):693-701. PubMed ID: 415773
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Dielectrophoretic-field flow fractionation analysis of dielectric, density, and deformability characteristics of cells and particles.
    Gascoyne PR
    Anal Chem; 2009 Nov; 81(21):8878-85. PubMed ID: 19791772
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determinants of red blood cell deformability in relation to cell age.
    Bosch FH; Werre JM; Schipper L; Roerdinkholder-Stoelwinder B; Huls T; Willekens FL; Wichers G; Halie MR
    Eur J Haematol; 1994 Jan; 52(1):35-41. PubMed ID: 8299768
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Acute hydrodynamic damage induced by SPLITT fractionation and centrifugation in red blood cells.
    Urbina A; Godoy-Silva R; Hoyos M; Camacho M
    J Chromatogr B Analyt Technol Biomed Life Sci; 2016 May; 1020():53-61. PubMed ID: 27023157
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Rapid procedure for the preparation of erythrocytes destined for deformability measurements].
    Hanss M; Gattegno L; Delatour E; Gaudey F; Koutsouris D
    Nouv Rev Fr Hematol (1978); 1985; 27(5):327-31. PubMed ID: 4080543
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The dynamic behavior of chemically "stiffened" red blood cells in microchannel flows.
    Forsyth AM; Wan J; Ristenpart WD; Stone HA
    Microvasc Res; 2010 Jul; 80(1):37-43. PubMed ID: 20303993
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Osmolarity effects on red blood cell elution in sedimentation field-flow fractionation.
    Assidjo NE; Chianéa T; Clarot I; Dreyfuss MF; Cardot PJ
    J Chromatogr Sci; 1999 Jul; 37(7):229-36. PubMed ID: 10422264
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A Passive Microfluidic Device Based on Crossflow Filtration for Cell Separation Measurements: A Spectrophotometric Characterization.
    Faustino V; Catarino SO; Pinho D; Lima RA; Minas G
    Biosensors (Basel); 2018 Dec; 8(4):. PubMed ID: 30544881
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The effect of centrifugation at various g force levels on rheological properties of rat, dog, pig and human red blood cells.
    Kiss F; Toth E; Miszti-Blasius K; Nemeth N
    Clin Hemorheol Microcirc; 2016; 62(3):215-27. PubMed ID: 26444597
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Finite element analysis of the lift on a slightly deformable and freely rotating and translating cylinder in two-dimensional channel flow.
    Zhao Y; Sharp MK
    J Biomech Eng; 1999 Apr; 121(2):148-52. PubMed ID: 10211447
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of Cell Age and Membrane Rigidity on Red Blood Cell Shape in Capillary Flow.
    Nouaman M; Darras A; John T; Simionato G; Rab MAE; van Wijk R; Laschke MW; Kaestner L; Wagner C; Recktenwald SM
    Cells; 2023 Jun; 12(11):. PubMed ID: 37296651
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of red blood cell fractionation by gravitational field-flow fractionation.
    Urbánková E; Vacek A; Nováková N; Matulík F; Chmelík J
    J Chromatogr; 1992 Nov; 583(1):27-34. PubMed ID: 1484089
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Rheologic properties of senescent erythrocytes: loss of surface area and volume with red blood cell age.
    Waugh RE; Narla M; Jackson CW; Mueller TJ; Suzuki T; Dale GL
    Blood; 1992 Mar; 79(5):1351-8. PubMed ID: 1536958
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Erythrocyte aggregation and erythrocyte deformability modify the permeability of erythrocyte enriched fibrin network.
    van Gelder JM; Nair CH; Dhall DP
    Thromb Res; 1996 Apr; 82(1):33-42. PubMed ID: 8731507
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Red cell deformability and lipid composition in two forms of acanthocytosis: enrichment of acanthocytic populations by density gradient centrifugation.
    Clark MR; Aminoff MJ; Chiu DT; Kuypers FA; Friend DS
    J Lab Clin Med; 1989 Apr; 113(4):469-81. PubMed ID: 2703759
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.