These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 8749373)

  • 1. How nature deals with stereoisomers.
    Lamzin VS; Dauter Z; Wilson KS
    Curr Opin Struct Biol; 1995 Dec; 5(6):830-6. PubMed ID: 8749373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydantoinases and related enzymes as biocatalysts for the synthesis of unnatural chiral amino acids.
    Altenbuchner J; Siemann-Herzberg M; Syldatk C
    Curr Opin Biotechnol; 2001 Dec; 12(6):559-63. PubMed ID: 11849938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Introduction of d-Amino Acids in Minimalistic Peptide Substrates by an S-Adenosyl-l-Methionine Radical Epimerase.
    Vagstad AL; Kuranaga T; Püntener S; Pattabiraman VR; Bode JW; Piel J
    Angew Chem Int Ed Engl; 2019 Feb; 58(8):2246-2250. PubMed ID: 30521081
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recombinant polycistronic structure of hydantoinase process genes in Escherichia coli for the production of optically pure D-amino acids.
    Martínez-Gómez AI; Martínez-Rodríguez S; Clemente-Jiménez JM; Pozo-Dengra J; Rodríguez-Vico F; Las Heras-Vázquez FJ
    Appl Environ Microbiol; 2007 Mar; 73(5):1525-31. PubMed ID: 17220246
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Racemization in reverse: evidence that D-amino acid toxicity on Earth is controlled by bacteria with racemases.
    Zhang G; Sun HJ
    PLoS One; 2014; 9(3):e92101. PubMed ID: 24647559
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel D-mandelate dehydrogenase used in three-enzyme cascade reaction for highly efficient synthesis of non-natural chiral amino acids.
    Fan CW; Xu GC; Ma BD; Bai YP; Zhang J; Xu JH
    J Biotechnol; 2015 Feb; 195():67-71. PubMed ID: 25449542
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharides as separation media for the separation of proteins, peptides and stereoisomers of amino acids.
    Fan X; Cao L; Geng L; Ma Y; Wei Y; Wang Y
    Int J Biol Macromol; 2021 Sep; 186():616-638. PubMed ID: 34242648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An improved racemase/acylase biotransformation for the preparation of enantiomerically pure amino acids.
    Baxter S; Royer S; Grogan G; Brown F; Holt-Tiffin KE; Taylor IN; Fotheringham IG; Campopiano DJ
    J Am Chem Soc; 2012 Nov; 134(47):19310-3. PubMed ID: 23130969
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Chirality and drug targeting: pros and cons.
    Lien EJ
    J Drug Target; 1995; 2(6):527-32. PubMed ID: 7773615
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protein design with L- and D-alpha-amino acid structures as the alphabet.
    Durani S
    Acc Chem Res; 2008 Oct; 41(10):1301-8. PubMed ID: 18642934
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Stereospecificity for the hydrogen transfer and molecular evolution of pyridoxal enzymes.
    Yoshimura T; Jhee KH; Soda K
    Biosci Biotechnol Biochem; 1996 Feb; 60(2):181-7. PubMed ID: 9063963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The stereoisomers of alpha epsilon-diaminopimelic acid. III. Properties and distribution of diaminopimelic acid racemase, an enzyme causing interconversion of the LL and meso isomers.
    ANTIA M; HOARE DS; WORK E
    Biochem J; 1957 Mar; 65(3):448-59. PubMed ID: 13412646
    [No Abstract]   [Full Text] [Related]  

  • 13. Radical S-adenosyl methionine epimerases: regioselective introduction of diverse D-amino acid patterns into peptide natural products.
    Morinaka BI; Vagstad AL; Helf MJ; Gugger M; Kegler C; Freeman MF; Bode HB; Piel J
    Angew Chem Int Ed Engl; 2014 Aug; 53(32):8503-7. PubMed ID: 24943072
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Kinetic resolution of amino acid esters catalyzed by lipases.
    Houng JY; Wu ML; Chen ST
    Chirality; 1996; 8(6):418-22. PubMed ID: 8904833
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The molecular basis for lipase stereoselectivity.
    Chen H; Meng X; Xu X; Liu W; Li S
    Appl Microbiol Biotechnol; 2018 Apr; 102(8):3487-3495. PubMed ID: 29500755
    [TBL] [Abstract][Full Text] [Related]  

  • 16. D-Amino acids of the amino acid pool and occurrence of racemase and D-amino acid oxidase activities in Escherichia coli B.
    Raunio RP; Munter MJ; Jaakkola OJ; Karppinen JT
    Folia Microbiol (Praha); 1978; 23(5):341-8. PubMed ID: 29829
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Diastereoisomerism, contact points, and chiral selectivity: a four-site saga.
    Bentley R
    Arch Biochem Biophys; 2003 Jun; 414(1):1-12. PubMed ID: 12745248
    [TBL] [Abstract][Full Text] [Related]  

  • 18. D-Amino acid metabolism in mammals: biosynthesis, degradation and analytical aspects of the metabolic study.
    Ohide H; Miyoshi Y; Maruyama R; Hamase K; Konno R
    J Chromatogr B Analyt Technol Biomed Life Sci; 2011 Nov; 879(29):3162-8. PubMed ID: 21757409
    [TBL] [Abstract][Full Text] [Related]  

  • 19. D-amino acids in the brain: pyridoxal phosphate-dependent amino acid racemases and the physiology of D-serine.
    Rodríguez-Crespo I
    FEBS J; 2008 Jul; 275(14):3513. PubMed ID: 18564181
    [No Abstract]   [Full Text] [Related]  

  • 20. Engineered dehydrogenase biocatalysts for non-natural amino acids: efficient isolation of the D-enantiomer from racemic mixtures.
    Paradisi F; Conway PA; Maguire AR; Engel PC
    Org Biomol Chem; 2008 Oct; 6(19):3611-5. PubMed ID: 19082164
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.