These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

322 related articles for article (PubMed ID: 8749865)

  • 41. Influence of microvascular sutures on shear strain rate in realistic pulsatile flow.
    Wain RAJ; Smith DJ; Hammond DR; Whitty JPM
    Microvasc Res; 2018 Jul; 118():69-81. PubMed ID: 29522755
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Wall shear stresses in small and large two-way bypass grafts.
    Qiao A; Liu Y; Guo Z
    Med Eng Phys; 2006 Apr; 28(3):251-8. PubMed ID: 16029954
    [TBL] [Abstract][Full Text] [Related]  

  • 43. On using experimentally estimated wall shear stresses to validate numerically predicted results.
    Walsh M; McGloughlin T; Liepsch DW; O'Brien T; Morris L; Ansari AR
    Proc Inst Mech Eng H; 2003; 217(2):77-90. PubMed ID: 12666774
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Localization of bypass-induced changes in flow in coronary artery models.
    Singh M; Liepsch D
    Indian J Exp Biol; 2003 Nov; 41(11):1249-52. PubMed ID: 15332491
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Laser Doppler velocimetry (LDV) and 3D phase-contrast magnetic resonance angiography (PC-MRA) velocity measurements: validation in an anatomically accurate cerebral artery aneurysm model with steady flow.
    Hollnagel DI; Summers PE; Kollias SS; Poulikakos D
    J Magn Reson Imaging; 2007 Dec; 26(6):1493-505. PubMed ID: 17968887
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Validation of a fluid-structure interaction numerical model for predicting flow transients in arteries.
    Kanyanta V; Ivankovic A; Karac A
    J Biomech; 2009 Aug; 42(11):1705-12. PubMed ID: 19482285
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Computational modeling of LDL and albumin transport in an in vivo CT image-based human right coronary artery.
    Sun N; Torii R; Wood NB; Hughes AD; Thom SA; Xu XY
    J Biomech Eng; 2009 Feb; 131(2):021003. PubMed ID: 19102562
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The effects of non-Newtonian viscoelasticity and wall elasticity on flow at a 90 degrees bifurcation.
    Ku DN; Liepsch D
    Biorheology; 1986; 23(4):359-70. PubMed ID: 3779061
    [TBL] [Abstract][Full Text] [Related]  

  • 49. LES of additive and non-additive pulsatile flows in a model arterial stenosis.
    Molla MM; Paul MC; Roditi G
    Comput Methods Biomech Biomed Engin; 2010 Feb; 13(1):105-20. PubMed ID: 19657797
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A viscoelastic model of arterial wall motion in pulsatile flow: implications for Doppler ultrasound clutter assessment.
    Warriner RK; Johnston KW; Cobbold RS
    Physiol Meas; 2008 Feb; 29(2):157-79. PubMed ID: 18256449
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hemodynamics of an artery with mild stenosis.
    Cavalcanti S
    J Biomech; 1995 Apr; 28(4):387-99. PubMed ID: 7738048
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Impedance of a fibrin clot in a cylindrical tube: relation to clot permeability and viscoelasticity.
    Thurston GB; Henderson NM
    Biorheology; 1995; 32(5):503-20. PubMed ID: 8541521
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Flow measurements in an atherosclerotic curved, tapered femoral artery model of man.
    Back LH; Kwack EY; Crawford DW
    J Biomech Eng; 1988 Nov; 110(4):310-9. PubMed ID: 3205016
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Noninvasive measurement of steady and pulsating velocity profiles and shear rates in arteries using echo PIV: in vitro validation studies.
    Kim HB; Hertzberg J; Lanning C; Shandas R
    Ann Biomed Eng; 2004 Aug; 32(8):1067-76. PubMed ID: 15446503
    [TBL] [Abstract][Full Text] [Related]  

  • 55. [Pulsatile flow model with elastic blood vessels for duplex ultrasound studies].
    Petrick J; Schlief R; Zomack M; Langholz J; Urbank A
    Ultraschall Med; 1992 Dec; 13(6):277-82. PubMed ID: 1290089
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Pulsatile two-dimensional flow and plaque formation in a carotid artery bifurcation.
    Nazemi M; Kleinstreuer C; Archie JP
    J Biomech; 1990; 23(10):1031-7. PubMed ID: 2229086
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Derivation of shear rates from near-wall LDA measurements under steady and pulsatile flow conditions.
    Fatemi RS; Rittgers SE
    J Biomech Eng; 1994 Aug; 116(3):361-8. PubMed ID: 7799640
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Wall shear stress and early atherosclerotic lesions in the abdominal aorta in young adults.
    Pedersen EM; Agerbaek M; Kristensen IB; Yoganathan AP
    Eur J Vasc Endovasc Surg; 1997 May; 13(5):443-51. PubMed ID: 9166266
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Modeling of the wave transmission properties of large arteries using nonlinear elastic tubes.
    Pythoud F; Stergiopulos N; Meister JJ
    J Biomech; 1994 Nov; 27(11):1379-81. PubMed ID: 7798288
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Non-Newtonian flow of blood in an arteriosclerotic blood vessel with rigid permeable walls.
    Das B; Batra RL
    J Theor Biol; 1995 Jul; 175(1):1-11. PubMed ID: 7564389
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 17.