These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
139 related articles for article (PubMed ID: 8749866)
1. Forward and backward waves in the arterial system: nonlinear separation using Riemann invariants. Pythoud F; Stergiopulos N; Meister JJ Technol Health Care; 1995 Dec; 3(3):201-7. PubMed ID: 8749866 [TBL] [Abstract][Full Text] [Related]
2. Separation of arterial pressure waves into their forward and backward running components. Pythoud F; Stergiopulos N; Meister JJ J Biomech Eng; 1996 Aug; 118(3):295-301. PubMed ID: 8872250 [TBL] [Abstract][Full Text] [Related]
3. Determination of wave speed and wave separation in the arteries using diameter and velocity. Feng J; Khir AW J Biomech; 2010 Feb; 43(3):455-62. PubMed ID: 19892359 [TBL] [Abstract][Full Text] [Related]
4. Effects of friction and nonlinearities on the separation of arterial waves into their forward and backward components. Pythoud F; Stergiopulos N; Bertram CD; Meister JJ J Biomech; 1996 Nov; 29(11):1419-23. PubMed ID: 8894922 [TBL] [Abstract][Full Text] [Related]
5. Forward and backward running waves in the arteries: analysis using the method of characteristics. Parker KH; Jones CJ J Biomech Eng; 1990 Aug; 112(3):322-6. PubMed ID: 2214715 [TBL] [Abstract][Full Text] [Related]
6. Wave dissipation in flexible tubes in the time domain: in vitro model of arterial waves. Feng J; Long Q; Khir AW J Biomech; 2007; 40(10):2130-8. PubMed ID: 17166499 [TBL] [Abstract][Full Text] [Related]
7. The compression and expansion waves of the forward and backward flows: an in-vitro arterial model. Feng J; Khir AW Proc Inst Mech Eng H; 2008 May; 222(4):531-42. PubMed ID: 18595362 [TBL] [Abstract][Full Text] [Related]
8. Wave intensity amplification and attenuation in non-linear flow: implications for the calculation of local reflection coefficients. Mynard J; Penny DJ; Smolich JJ J Biomech; 2008 Dec; 41(16):3314-21. PubMed ID: 19019371 [TBL] [Abstract][Full Text] [Related]
9. Validity of the local nonlinear arterial flow theory: influence of the upstream and downstream conditions. Bensalah A; Flaud P Med Eng Phys; 2008 Nov; 30(9):1159-67. PubMed ID: 18400549 [TBL] [Abstract][Full Text] [Related]
10. Quantification of wave reflection using peripheral blood pressure waveforms. Kim CS; Fazeli N; McMurtry MS; Finegan BA; Hahn JO IEEE J Biomed Health Inform; 2015 Jan; 19(1):309-16. PubMed ID: 25561452 [TBL] [Abstract][Full Text] [Related]
11. Measurement of oscillatory flow pressure gradient in an elastic artery model. Cohen MI; Wang DM; Tarbell JM Biorheology; 1995; 32(4):459-71. PubMed ID: 7579210 [TBL] [Abstract][Full Text] [Related]
12. Towards new indices of arterial stiffness using systolic pulse contour analysis: a theoretical point of view. Chemla D; Plamann K; Nitenberg A J Cardiovasc Pharmacol; 2008 Feb; 51(2):111-7. PubMed ID: 18287877 [TBL] [Abstract][Full Text] [Related]
13. Nonlinear separation of forward and backward running waves in elastic conduits. Stergiopulos N; Tardy Y; Meister JJ J Biomech; 1993 Feb; 26(2):201-9. PubMed ID: 8429061 [TBL] [Abstract][Full Text] [Related]
14. The physiological impact of the nonlinearity of arterial elasticity in the ambulatory arterial stiffness index. Craiem D; Graf S; Salvucci F; Chironi G; Megnien JL; Simon A; Armentano RL Physiol Meas; 2010 Jul; 31(7):1037-46. PubMed ID: 20585150 [TBL] [Abstract][Full Text] [Related]
16. A novel wave reflection model of the human arterial system. Zhang H; Li JK Cardiovasc Eng; 2009 Jun; 9(2):39-48. PubMed ID: 19495973 [TBL] [Abstract][Full Text] [Related]
17. Calculation of forward and backward arterial waves by analysis of two pressure waveforms. Swamy G; Olivier NB; Mukkamala R IEEE Trans Biomed Eng; 2010 Dec; 57(12):2833-9. PubMed ID: 20833598 [TBL] [Abstract][Full Text] [Related]
18. The reservoir-wave paradigm introduces error into arterial wave analysis: a computer modelling and in-vivo study. Mynard JP; Penny DJ; Davidson MR; Smolich JJ J Hypertens; 2012 Apr; 30(4):734-43. PubMed ID: 22278142 [TBL] [Abstract][Full Text] [Related]
19. Wave intensity in the ascending aorta: effects of arterial occlusion. Khir AW; Parker KH J Biomech; 2005 Apr; 38(4):647-55. PubMed ID: 15713284 [TBL] [Abstract][Full Text] [Related]
20. Experimental validation of a time-domain-based wave propagation model of blood flow in viscoelastic vessels. Bessems D; Giannopapa CG; Rutten MC; van de Vosse FN J Biomech; 2008; 41(2):284-91. PubMed ID: 18031750 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]