These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 875019)

  • 41. Constitutive expression of bacteriophage P2 early genes resulting from a tandem duplication.
    Bertani G; Bertani LE
    Proc Natl Acad Sci U S A; 1974 Feb; 71(2):315-9. PubMed ID: 4521805
    [TBL] [Abstract][Full Text] [Related]  

  • 42. DNA twisting and the effects of non-contacted bases on affinity of 434 operator for 434 repressor.
    Koudelka GB; Carlson P
    Nature; 1992 Jan; 355(6355):89-91. PubMed ID: 1731202
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Viral integration and excision: structure of the lambda att sites.
    Landy A; Ross W
    Science; 1977 Sep; 197(4309):1147-60. PubMed ID: 331474
    [No Abstract]   [Full Text] [Related]  

  • 44. The bacteriophage 434 right operator. Roles of O(R)1, O(R)2 and O(R)3.
    Bushman FD
    J Mol Biol; 1993 Mar; 230(1):28-40. PubMed ID: 8450541
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The regulatory region of the L-arabinose operon: a physical, genetic and physiological study.
    Schleif R; Lis JT
    J Mol Biol; 1975 Jul; 95(3):417-31. PubMed ID: 168391
    [No Abstract]   [Full Text] [Related]  

  • 46. [Regulation of int gene expression in phage phi 81].
    Sineokiĭ SP; Balandina LA; Zinov'eva VA; Krylov VN
    Genetika; 1983 Dec; 19(12):1965-70. PubMed ID: 6686567
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Lac repressor purification without inactivation of DNA binding activity.
    Rosenberg JM; Khallai OB; Kopka ML; Dickerson RE; Riggs AD
    Nucleic Acids Res; 1977 Mar; 4(3):567-72. PubMed ID: 866182
    [TBL] [Abstract][Full Text] [Related]  

  • 48. [E. coli mutanic produced by the insertion of bacteriophage lambda DNA (author's transl)].
    Shimada K
    Tanpakushitsu Kakusan Koso; 1975 Jun; 20(7):683-90. PubMed ID: 1101309
    [No Abstract]   [Full Text] [Related]  

  • 49. The topography of lambda DNA: isolation of ordered fragments and the physical mapping of point mutations.
    Egan JB; Hogness DS
    J Mol Biol; 1972 Nov; 71(2):363-81. PubMed ID: 4635989
    [No Abstract]   [Full Text] [Related]  

  • 50. Mechanism of action of the cro protein of bacteriophage lambda.
    Johnson A; Meyer BJ; Ptashne M
    Proc Natl Acad Sci U S A; 1978 Apr; 75(4):1783-7. PubMed ID: 273909
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Isolation of Escherichia coli RNA polymerase binding sites on T5 and T7 DNA: further evidence for sigma-dependent recognition of A-T-rich DNA sequences.
    Le Talaer JY; Kermici M; Jeanteur P
    Proc Natl Acad Sci U S A; 1973 Oct; 70(10):2911-5. PubMed ID: 4355373
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Characterization and sequencing of the region containing gene N, the nutL site and tL1 terminator of bacteriophage phi 80.
    Tanaka S; Matsushiro A
    Gene; 1985; 38(1-3):119-29. PubMed ID: 4065570
    [TBL] [Abstract][Full Text] [Related]  

  • 53. [Isolation of a DNA fragment containing phage lambda repressor gene].
    Kopylova-Sviridova TN; Tikhomirova LP; Chernov AP; Taniashin VI; Kriukov VM
    Dokl Akad Nauk SSSR; 1975 Jan; 220(3):707-10. PubMed ID: 1112180
    [No Abstract]   [Full Text] [Related]  

  • 54. Gene regulation at the right operator (OR) of bacteriophage lambda. III. lambda repressor directly activates gene transcription.
    Meyer BJ; Ptashne M
    J Mol Biol; 1980 May; 139(2):195-205. PubMed ID: 6447796
    [No Abstract]   [Full Text] [Related]  

  • 55. Arrangement of DNA in lambda bacteriophage heads. 3. Location and number of nucleotides cleaved from lambda-DNA by micrococcal nuclease attack on heads.
    Padmanabhan R; Wu R; Bode VC
    J Mol Biol; 1972 Aug; 69(2):201-7. PubMed ID: 4560947
    [No Abstract]   [Full Text] [Related]  

  • 56. Control of bacteriophage lambda repressor synthesis: regulation of the maintenance pathway of the cro and cI products.
    Reichardt LF
    J Mol Biol; 1975 Apr; 93(2):289-309. PubMed ID: 1152054
    [No Abstract]   [Full Text] [Related]  

  • 57. Lambda phage DNA: joining of a chemically synthesized cohesive end.
    Harvey CL; Wright R; Nussbaum AL
    Science; 1973 Jan; 179(4070):291-3. PubMed ID: 4566655
    [TBL] [Abstract][Full Text] [Related]  

  • 58. The 3'-terminal nucleotide sequences of lambda DNA.
    Brezinski DP; Wang JC
    Biochem Biophys Res Commun; 1973 Jan; 50(2):398-404. PubMed ID: 4569877
    [No Abstract]   [Full Text] [Related]  

  • 59. The secondary structure of bacteriophage DNA in situ. 3. Reaction of Sd phage with O-methylhydroxylamine.
    Tikchonenko TI; Budowsky EI; Sklyadneva VB; Khromov IS
    J Mol Biol; 1971 Feb; 55(3):535-47. PubMed ID: 4323929
    [No Abstract]   [Full Text] [Related]  

  • 60. Nucleotide sequence of the cro-cII-oop region of bacteriophage 434 DNA.
    Grosschedl R; Schwarz E
    Nucleic Acids Res; 1979 Mar; 6(3):867-81. PubMed ID: 375198
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.