These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 8750232)
21. The effect of metabolic fuel on force production and resting inorganic phosphate levels in mouse skeletal muscle. Phillips SK; Wiseman RW; Woledge RC; Kushmerick MJ J Physiol; 1993 Mar; 462():135-46. PubMed ID: 8331580 [TBL] [Abstract][Full Text] [Related]
22. Effects of glucose on contractile function, [Ca2+]i, and glycogen in isolated mouse skeletal muscle. Helander I; Westerblad H; Katz A Am J Physiol Cell Physiol; 2002 Jun; 282(6):C1306-12. PubMed ID: 11997245 [TBL] [Abstract][Full Text] [Related]
23. Mechanisms underlying the reduction of isometric force in skeletal muscle fatigue. Westerblad H; Allen DG; Bruton JD; Andrade FH; Lännergren J Acta Physiol Scand; 1998 Mar; 162(3):253-60. PubMed ID: 9578370 [TBL] [Abstract][Full Text] [Related]
24. Effects of reduced muscle glycogen concentration on force, Ca2+ release and contractile protein function in intact mouse skeletal muscle. Chin ER; Allen DG J Physiol; 1997 Jan; 498 ( Pt 1)(Pt 1):17-29. PubMed ID: 9023765 [TBL] [Abstract][Full Text] [Related]
25. Mitochondrial and myoplasmic [Ca2+] in single fibres from mouse limb muscles during repeated tetanic contractions. Bruton J; Tavi P; Aydin J; Westerblad H; Lännergren J J Physiol; 2003 Aug; 551(Pt 1):179-90. PubMed ID: 12815178 [TBL] [Abstract][Full Text] [Related]
26. Skeletal muscle bioenergetics during all-out exercise: mechanistic insight into the oxygen uptake slow component and neuromuscular fatigue. Broxterman RM; Layec G; Hureau TJ; Amann M; Richardson RS J Appl Physiol (1985); 2017 May; 122(5):1208-1217. PubMed ID: 28209743 [TBL] [Abstract][Full Text] [Related]
27. Effect of hypoxia on fatigue development in rat muscle composed of different fibre types. Howlett RA; Hogan MC Exp Physiol; 2007 Sep; 92(5):887-94. PubMed ID: 17545215 [TBL] [Abstract][Full Text] [Related]
28. Phosphate increase during fatigue affects crossbridge kinetics in intact mouse muscle at physiological temperature. Nocella M; Cecchi G; Colombini B J Physiol; 2017 Jul; 595(13):4317-4328. PubMed ID: 28332714 [TBL] [Abstract][Full Text] [Related]
29. Fatigue and recovery of phosphorus metabolites and pH during stimulation of rat skeletal muscle: an evoked electromyography and in vivo 31P-nuclear magnetic resonance spectroscopy study. Mizuno T; Takanashi Y; Yoshizaki K; Kondo M Eur J Appl Physiol Occup Physiol; 1994; 69(2):102-9. PubMed ID: 7805663 [TBL] [Abstract][Full Text] [Related]
30. Effects of fatiguing exercise on high-energy phosphates, force, and EMG: evidence for three phases of recovery. Miller RG; Giannini D; Milner-Brown HS; Layzer RB; Koretsky AP; Hooper D; Weiner MW Muscle Nerve; 1987; 10(9):810-21. PubMed ID: 3683452 [TBL] [Abstract][Full Text] [Related]
31. Effect of decreased pH on force and phosphocreatine in mammalian skeletal muscle. Meyer RA; Adams GR; Fisher MJ; Dillon PF; Krisanda JM; Brown TR; Kushmerick MJ Can J Physiol Pharmacol; 1991 Feb; 69(2):305-10. PubMed ID: 1905190 [TBL] [Abstract][Full Text] [Related]
33. The effect of acid-base balance on fatigue of skeletal muscle. Mainwood GW; Renaud JM Can J Physiol Pharmacol; 1985 May; 63(5):403-16. PubMed ID: 2994867 [TBL] [Abstract][Full Text] [Related]
34. Effects of fiber type on ischemia-reperfusion injury in mouse skeletal muscle. Woitaske MD; McCarter RJ Plast Reconstr Surg; 1998 Nov; 102(6):2052-63. PubMed ID: 9811003 [TBL] [Abstract][Full Text] [Related]
35. Effects of β₂-agonists on force during and following anoxia in rat extensor digitorum longus muscle. Fredsted A; Gissel H; Ortenblad N; Clausen T J Appl Physiol (1985); 2012 Jun; 112(12):2057-67. PubMed ID: 22492937 [TBL] [Abstract][Full Text] [Related]
36. Changes in soleus motoneuron pool reflex excitability and surface EMG parameters during fatiguing low- vs. high-intensity isometric contractions. Pääsuke M; Rannama L; Ereline J; Gapeyeva H; Oöpik V Electromyogr Clin Neurophysiol; 2007; 47(7-8):341-50. PubMed ID: 18051628 [TBL] [Abstract][Full Text] [Related]
37. KATP channel deficiency in mouse flexor digitorum brevis causes fibre damage and impairs Ca2+ release and force development during fatigue in vitro. Cifelli C; Bourassa F; Gariépy L; Banas K; Benkhalti M; Renaud JM J Physiol; 2007 Jul; 582(Pt 2):843-57. PubMed ID: 17510189 [TBL] [Abstract][Full Text] [Related]
38. Effects of lactate on force production by mouse EDL muscle: implications for the development of fatigue. Spangenburg EE; Ward CW; Williams JH Can J Physiol Pharmacol; 1998 Jun; 76(6):642-8. PubMed ID: 9923402 [TBL] [Abstract][Full Text] [Related]
39. Changes in crossbridge and non-crossbridge energetics during moderate fatigue of frog muscle fibres. Barclay CJ; Curtin NA; Woledge RC J Physiol; 1993 Aug; 468():543-56. PubMed ID: 8254523 [TBL] [Abstract][Full Text] [Related]
40. Force, relaxation and energy metabolism of rat soleus muscle during anaerobic contraction. Sahlin K; Edström L; Sjöholm H Acta Physiol Scand; 1987 Jan; 129(1):1-7. PubMed ID: 3565037 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]