These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

418 related articles for article (PubMed ID: 8750663)

  • 41. Foodborne disease outbreaks caused by Bacillus cereus, Clostridium perfringens, and Staphylococcus aureus--United States, 1998-2008.
    Bennett SD; Walsh KA; Gould LH
    Clin Infect Dis; 2013 Aug; 57(3):425-33. PubMed ID: 23592829
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Occurrence of Bacillus cereus spores with a damaged exosporium: consequences on the spore adhesion on surfaces of food processing lines.
    Faille C; Tauveron G; Le Gentil-Lelièvre C; Slomianny C
    J Food Prot; 2007 Oct; 70(10):2346-53. PubMed ID: 17969617
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A possible route for foodborne transmission of Clostridium difficile?
    Lund BM; Peck MW
    Foodborne Pathog Dis; 2015 Mar; 12(3):177-82. PubMed ID: 25599421
    [TBL] [Abstract][Full Text] [Related]  

  • 44. [Heat treatment for the control of Bacillus cereus spores in foods].
    Tanaka K; Motoi H; Hara-Kudo Y
    Shokuhin Eiseigaku Zasshi; 2005 Feb; 46(1):1-7. PubMed ID: 15881248
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Germination and outgrowth of spores of Bacillus cereus group members: diversity and role of germinant receptors.
    Abee T; Groot MN; Tempelaars M; Zwietering M; Moezelaar R; van der Voort M
    Food Microbiol; 2011 Apr; 28(2):199-208. PubMed ID: 21315974
    [TBL] [Abstract][Full Text] [Related]  

  • 46. The identification and characterization of Clostridium perfringens by real-time PCR, location of enterotoxin gene, and heat resistance.
    Grant KA; Kenyon S; Nwafor I; Plowman J; Ohai C; Halford-Maw R; Peck MW; McLauchlin J
    Foodborne Pathog Dis; 2008 Oct; 5(5):629-39. PubMed ID: 18681798
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Detection of toxigenic Bacillus cereus and Bacillus thuringiensis spores in U.S. rice.
    Ankolekar C; Rahmati T; Labbé RG
    Int J Food Microbiol; 2009 Jan; 128(3):460-6. PubMed ID: 19027973
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Enterotoxigenic profiling of emetic toxin- and enterotoxin-producing Bacillus cereus, Isolated from food, environmental, and clinical samples by multiplex PCR.
    Forghani F; Kim JB; Oh DH
    J Food Sci; 2014 Nov; 79(11):M2288-93. PubMed ID: 25311736
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Food poisoning associated with emetic-type of Bacillus cereus in Korea.
    Kim JB; Jeong HR; Park YB; Kim JM; Oh DH
    Foodborne Pathog Dis; 2010 May; 7(5):555-63. PubMed ID: 20446859
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Isolation of Bacillus cereus in school restaurants in Colombia.
    Forero AY; Galindo M; Morales GE
    Biomedica; 2018 Sep; 38(3):338-344. PubMed ID: 30335239
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Characterization of Enterotoxigenic Bacillus cereus sensu lato and Staphylococcus aureus Isolates and Associated Enterotoxin Production Dynamics in Milk or Meat-Based Broth.
    Walker-York-Moore L; Moore SC; Fox EM
    Toxins (Basel); 2017 Jul; 9(7):. PubMed ID: 28714887
    [No Abstract]   [Full Text] [Related]  

  • 52. Evaluation and control of the risk of foodborne pathogens and spoilage bacteria present in Awa-Uirou, a sticky rice cake containing sweet red bean paste.
    Okahisa N; Inatsu Y; Juneja VK; Kawamoto S
    Foodborne Pathog Dis; 2008 Jun; 5(3):351-9. PubMed ID: 18564913
    [TBL] [Abstract][Full Text] [Related]  

  • 53. The survival and growth of Bacillus cereus in boiled and fried rice in relation to outbreaks of food poisoning.
    Gilbert RJ; Stringer MF; Peace TC
    J Hyg (Lond); 1974 Dec; 73(3):433-44. PubMed ID: 4216605
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Characteristics of some psychrotrophic Bacillus cereus isolates.
    Dufrenne J; Bijwaard M; te Giffel M; Beumer R; Notermans S
    Int J Food Microbiol; 1995 Oct; 27(2-3):175-83. PubMed ID: 8579988
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Molecular Characterization and Toxin Profiles of Bacillus spp. Isolated from Retail Fish and Ground Beef.
    Özdemir F; Arslan S
    J Food Sci; 2019 Mar; 84(3):548-556. PubMed ID: 30690739
    [TBL] [Abstract][Full Text] [Related]  

  • 56. A novel small acid soluble protein variant is important for spore resistance of most Clostridium perfringens food poisoning isolates.
    Li J; McClane BA
    PLoS Pathog; 2008 May; 4(5):e1000056. PubMed ID: 18451983
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Minimizing the level of Bacillus cereus spores in farm tank milk.
    Vissers MM; Te Giffel MC; Driehuis F; De Jong P; Lankveld JM
    J Dairy Sci; 2007 Jul; 90(7):3286-93. PubMed ID: 17582113
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Application of a novel amplicon-based sequencing approach reveals the diversity of the Bacillus cereus group in stored raw and pasteurized milk.
    Porcellato D; Aspholm M; Skeie SB; Mellegård H
    Food Microbiol; 2019 Aug; 81():32-39. PubMed ID: 30910086
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Characterization of spore appendages from Bacillus cereus strains.
    Stalheim T; Granum PE
    J Appl Microbiol; 2001 Nov; 91(5):839-45. PubMed ID: 11722661
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Modelling the growth of Clostridium perfringens during the cooling of bulk meat.
    Le Marc Y; Plowman J; Aldus CF; Munoz-Cuevas M; Baranyi J; Peck MW
    Int J Food Microbiol; 2008 Nov; 128(1):41-50. PubMed ID: 18768233
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 21.