These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

62 related articles for article (PubMed ID: 8751362)

  • 1. Establishing relationships between closely related species using total genomic DNA as a probe.
    Anamthawat-Jónsson K; Heslop-Harrison JS
    Methods Mol Biol; 1996; 50():209-25. PubMed ID: 8751362
    [No Abstract]   [Full Text] [Related]  

  • 2. Genome analysis of Thinopyrum intermedium and Thinopyrum ponticum using genomic in situ hybridization.
    Chen Q; Conner RL; Laroche A; Thomas JB
    Genome; 1998 Aug; 41(4):580-6. PubMed ID: 9796107
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Molecular cytogenetic analyses of hexaploid lines spontaneously appearing in octoploid Triticale.
    Dou QW; Tanaka H; Nakata N; Tsujimoto H
    Theor Appl Genet; 2006 Dec; 114(1):41-7. PubMed ID: 17016687
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular cytogenetic analysis of Aegilops cylindrica host.
    Linc G; Friebe BR; Kynast RG; Molnar-Lang M; Köszegi B; Sutka J; Gill BS
    Genome; 1999 Jun; 42(3):497-503. PubMed ID: 10382296
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Direct labelling of plant chromosomes by rapid in situ hybridization.
    Reader SM; Abbo S; Purdie KA; King IP; Miller TE
    Trends Genet; 1994 Aug; 10(8):265-6. PubMed ID: 7940753
    [No Abstract]   [Full Text] [Related]  

  • 6. Intergenomic translocations and the genomic composition of Avena maroccana Gdgr. revealed by FISH.
    Leggett JM; Thomas HM; Meredith MR; Humphreys MW; Morgan WG; Thomas H; King IP
    Chromosome Res; 1994 Mar; 2(2):163-4. PubMed ID: 8032675
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Genome-specific repetitive DNA and RAPD markers for genome identification in Elymus and Hordelymus.
    Svitashev S; Bryngelsson T; Li X; Wang RR
    Genome; 1998 Feb; 41(1):120-8. PubMed ID: 9549065
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The genomic composition of Tricepiro, a synthetic forage crop.
    Ferrari MR; Greizerstein EJ; Paccapelo HA; Naranjo CA; Cuadrado A; Jouve N; Poggio L
    Genome; 2005 Feb; 48(1):154-9. PubMed ID: 15729407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The use of digoxigenin-labelled probes to detect DNA sequences specific for plant pathogenic bacteria.
    Dessaux Y; Elasri M; Glickmann E; Oger P; Petit A; Vaudequin-Dransart V
    Cell Mol Biol (Noisy-le-grand); 1995 Nov; 41(7):933-43. PubMed ID: 8595372
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Construction and characterization of a bacterial artificial chromosome library of Sorghum bicolor.
    Woo SS; Jiang J; Gill BS; Paterson AH; Wing RA
    Nucleic Acids Res; 1994 Nov; 22(23):4922-31. PubMed ID: 7800481
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Whole genome approaches to identify early meiotic gene candidates in cereals.
    Bovill WD; Deveshwar P; Kapoor S; Able JA
    Funct Integr Genomics; 2009 May; 9(2):219-29. PubMed ID: 18836753
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Paternity determination of interspecific rhododendron hybrids by genomic in situ hybridization (GISH).
    Czernicka M; Mścichowska A; Klein M; Muras P; Grzebelus E
    Genome; 2010 Apr; 53(4):277-84. PubMed ID: 20616859
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant science. Surprises inside a green grass genome.
    Bevan M
    Science; 2003 Jun; 300(5625):1514-5. PubMed ID: 12791971
    [No Abstract]   [Full Text] [Related]  

  • 14. Identifying the genome of wood barley Hordelymus europaeus (Poaceae: Triticeae).
    Ellneskog-Staam P; Taketa S; Salomon B; Anamthawat-Jónsson K; von Bothmer R
    Hereditas; 2006 Dec; 143(2006):103-12. PubMed ID: 17362342
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Genomic Southern blot analysis.
    Gebbie L
    Methods Mol Biol; 2014; 1099():159-77. PubMed ID: 24243203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic affinities revealed by GISH suggests intergenomic restructuring between parental genomes of the paleopolyploid genus Zea.
    González GE; Poggio L
    Genome; 2015 Oct; 58(10):433-9. PubMed ID: 26506040
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The rice genome and the minor grains.
    Goodman RM; Naylor R; Tefera H; Nelson R; Falcon W
    Science; 2002 Jun; 296(5574):1801. PubMed ID: 12053935
    [No Abstract]   [Full Text] [Related]  

  • 18. Genomic in situ hybridization analysis for identification of introgressed segments in alloplasmic lines from Zea mays x Zea diploperennis.
    Wei WH; Zhao WP; Song YC; Liu LH; Guo LQ; Gu MG
    Hereditas; 2003; 138(1):21-6. PubMed ID: 12830981
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Conservation of fine-scale DNA marker order in the genomes of rice and the Triticeae.
    Dunford RP; Kurata N; Laurie DA; Money TA; Minobe Y; Moore G
    Nucleic Acids Res; 1995 Jul; 23(14):2724-8. PubMed ID: 7651833
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the Genetic Basis of Grain Shape and Chalkiness Traits in Hybrid Rice Using Multiple Collaborative Populations.
    Gong J; Miao J; Zhao Y; Zhao Q; Feng Q; Zhan Q; Cheng B; Xia J; Huang X; Yang S; Han B
    Mol Plant; 2017 Oct; 10(10):1353-1356. PubMed ID: 28803900
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 4.