These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

269 related articles for article (PubMed ID: 8751892)

  • 1. Involvement of superoxide and myeloperoxidase in oxygen-dependent killing of Staphylococcus aureus by neutrophils.
    Hampton MB; Kettle AJ; Winterbourn CC
    Infect Immun; 1996 Sep; 64(9):3512-7. PubMed ID: 8751892
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Roles of superoxide and myeloperoxidase in ascorbate oxidation in stimulated neutrophils and H2O2-treated HL60 cells.
    Parker A; Cuddihy SL; Son TG; Vissers MC; Winterbourn CC
    Free Radic Biol Med; 2011 Oct; 51(7):1399-405. PubMed ID: 21791243
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes.
    Rosen H; Klebanoff SJ
    J Clin Invest; 1976 Jul; 58(1):50-60. PubMed ID: 180060
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of myeloperoxidase in the killing of Staphylococcus aureus by human neutrophils: studies with the myeloperoxidase inhibitor salicylhydroxamic acid.
    Humphreys JM; Davies B; Hart CA; Edwards SW
    J Gen Microbiol; 1989 May; 135(5):1187-93. PubMed ID: 2559945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inside the neutrophil phagosome: oxidants, myeloperoxidase, and bacterial killing.
    Hampton MB; Kettle AJ; Winterbourn CC
    Blood; 1998 Nov; 92(9):3007-17. PubMed ID: 9787133
    [No Abstract]   [Full Text] [Related]  

  • 6. Oxidative response of human neutrophils, monocytes, and alveolar macrophages induced by unopsonized surface-adherent Staphylococcus aureus.
    Devalon ML; Elliott GR; Regelmann WE
    Infect Immun; 1987 Oct; 55(10):2398-403. PubMed ID: 2820882
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of neutrophil oxidant production with diphenyleneiodonium and its effect on bacterial killing.
    Hampton MB; Winterbourn CC
    Free Radic Biol Med; 1995 Apr; 18(4):633-9. PubMed ID: 7750787
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Killing of phagocytosed Staphylococcus aureus by human neutrophils requires intracellular free calcium.
    Wilsson A; Lundqvist H; Gustafsson M; Stendahl O
    J Leukoc Biol; 1996 Jun; 59(6):902-7. PubMed ID: 8691076
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Common methodology is inadequate for studies on the microbicidal activity of neutrophils.
    Decleva E; Menegazzi R; Busetto S; Patriarca P; Dri P
    J Leukoc Biol; 2006 Jan; 79(1):87-94. PubMed ID: 16244110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TLR2 enhances NADPH oxidase activity and killing of Staphylococcus aureus by PMN.
    Jann NJ; Schmaler M; Ferracin F; Landmann R
    Immunol Lett; 2011 Mar; 135(1-2):17-23. PubMed ID: 20875459
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Neutrophil bactericidal dysfunction towards oxidant radical-sensitive microorganisms during experimental iron deficiency.
    Moore LL; Humbert JR
    Pediatr Res; 1984 Aug; 18(8):789-94. PubMed ID: 6089085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modeling the reactions of superoxide and myeloperoxidase in the neutrophil phagosome: implications for microbial killing.
    Winterbourn CC; Hampton MB; Livesey JH; Kettle AJ
    J Biol Chem; 2006 Dec; 281(52):39860-9. PubMed ID: 17074761
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Activation of NADPH oxidase in human neutrophils permeabilized with Staphylococcus aureus alpha-toxin. A lower Km when the enzyme is activated in situ.
    Bauldry SA; Nasrallah VN; Bass DA
    J Biol Chem; 1992 Jan; 267(1):323-30. PubMed ID: 1309741
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of fibronectin on the interaction of polymorphonuclear leukocytes with unopsonized and antibody-opsonized bacteria.
    Yang KD; Augustine NH; Gonzalez LA; Bohnsack JF; Hill HR
    J Infect Dis; 1988 Oct; 158(4):823-30. PubMed ID: 2844920
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Synergy between extracellular group IIA phospholipase A2 and phagocyte NADPH oxidase in digestion of phospholipids of Staphylococcus aureus ingested by human neutrophils.
    Femling JK; Nauseef WM; Weiss JP
    J Immunol; 2005 Oct; 175(7):4653-61. PubMed ID: 16177112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nutrient metal sequestration by calprotectin inhibits bacterial superoxide defense, enhancing neutrophil killing of Staphylococcus aureus.
    Kehl-Fie TE; Chitayat S; Hood MI; Damo S; Restrepo N; Garcia C; Munro KA; Chazin WJ; Skaar EP
    Cell Host Microbe; 2011 Aug; 10(2):158-64. PubMed ID: 21843872
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Coxiella burnetii fails to stimulate human neutrophil superoxide anion production.
    Akporiaye ET; Stefanovich D; Tsosie V; Baca G
    Acta Virol; 1990 Feb; 34(1):64-70. PubMed ID: 1975727
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Differential induction of stress proteins and functional effects of heat shock in human phagocytes.
    Polla BS; Stubbe H; Kantengwa S; Maridonneau-Parini I; Jacquier-Sarlin MR
    Inflammation; 1995 Jun; 19(3):363-78. PubMed ID: 7628864
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Killing of Mycobacterium tuberculosis by neutrophils: a nonoxidative process.
    Jones GS; Amirault HJ; Andersen BR
    J Infect Dis; 1990 Sep; 162(3):700-4. PubMed ID: 2167338
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Superoxide is an antagonist of antiinflammatory drugs that inhibit hypochlorous acid production by myeloperoxidase.
    Kettle AJ; Gedye CA; Winterbourn CC
    Biochem Pharmacol; 1993 May; 45(10):2003-10. PubMed ID: 8390258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.