BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 8752102)

  • 1. Characterization of inhibitor-sensitive and -resistant adenosine transporters in cultured human fetal astrocytes.
    Gu JG; Nath A; Geiger JD
    J Neurochem; 1996 Sep; 67(3):972-7. PubMed ID: 8752102
    [TBL] [Abstract][Full Text] [Related]  

  • 2. [3H]adenosine transport in synaptoneurosomes of postmortem human brain.
    Gu JG; Kala G; Geiger JD
    J Neurochem; 1993 Jun; 60(6):2232-7. PubMed ID: 8492128
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transport and metabolism of D-[3H]adenosine and L-[3H]adenosine in rat cerebral cortical synaptoneurosomes.
    Gu JG; Geiger JD
    J Neurochem; 1992 May; 58(5):1699-705. PubMed ID: 1560227
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of the abilities of nitrobenzylthioinosine, dilazep, and dipyridamole to protect human hematopoietic cells from 7-deazaadenosine (tubercidin).
    Cass CE; King KM; Montaño JT; Janowska-Wieczorek A
    Cancer Res; 1992 Nov; 52(21):5879-86. PubMed ID: 1394215
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of nucleoside transport inhibitors and adenine/ribose supply on ATP concentration and adenosine production in cardiac myocytes.
    Kalsi KK; Smolenski RT; Yacoub MH
    Mol Cell Biochem; 1998 Mar; 180(1-2):193-9. PubMed ID: 9546646
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Differential cardioprotection with selective inhibitors of adenosine metabolism and transport: role of purine release in ischemic and reperfusion injury.
    Abd-Elfattah AS; Jessen ME; Lekven J; Wechsler AS
    Mol Cell Biochem; 1998 Mar; 180(1-2):179-91. PubMed ID: 9546645
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Nucleoside transporter subtype expression: effects on potency of adenosine kinase inhibitors.
    Sinclair CJ; Powell AE; Xiong W; LaRivière CG; Baldwin SA; Cass CE; Young JD; Parkinson FE
    Br J Pharmacol; 2001 Nov; 134(5):1037-44. PubMed ID: 11682452
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adenine/ribose supply increases adenosine production and protects ATP pool in adenosine kinase-inhibited cardiac cells.
    Smolenski RT; Kalsi KK; Zych M; Kochan Z; Yacoub MH
    J Mol Cell Cardiol; 1998 Mar; 30(3):673-83. PubMed ID: 9515042
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Species differences in sensitivity of nucleoside transport in erythrocytes and cultured cells to inhibition by nitrobenzylthioinosine, dipyridamole, dilazep and lidoflazine.
    Plagemann PG; Woffendin C
    Biochim Biophys Acta; 1988 Apr; 969(1):1-8. PubMed ID: 3349106
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Involvement of bidirectional adenosine transporters in the release of L-[3H]adenosine from rat brain synaptosomal preparations.
    Gu JG; Foga IO; Parkinson FE; Geiger JD
    J Neurochem; 1995 May; 64(5):2105-10. PubMed ID: 7722493
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Adenosine uptake and deamination regulate tonic A2a receptor facilitation of evoked [3H]acetylcholine release from the rat motor nerve terminals.
    Correia-de-Sá P; Ribeiro JA
    Neuroscience; 1996 Jul; 73(1):85-92. PubMed ID: 8783232
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of adenosine uptake and metabolism by blood cells in the antiplatelet actions of dipyridamole, dilazep and nitrobenzylthioinosine.
    Dawicki DD; Agarwal KC; Parks RE
    Biochem Pharmacol; 1985 Nov; 34(22):3965-72. PubMed ID: 4062970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pharmacological characterization of rapidly accumulated adenosine by dissociated brain cells from adult rat.
    Geiger JD; Johnston ME; Yago V
    J Neurochem; 1988 Jul; 51(1):283-91. PubMed ID: 3379409
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular identification of the equilibrative NBMPR-sensitive (es) nucleoside transporter and demonstration of an equilibrative NBMPR-insensitive (ei) transport activity in human erythroleukemia (K562) cells.
    Boleti H; Coe IR; Baldwin SA; Young JD; Cass CE
    Neuropharmacology; 1997 Sep; 36(9):1167-79. PubMed ID: 9364472
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nucleoside transporter-mediated uptake and release of [3H]L-adenosine in DDT1 MF-2 smooth muscle cells.
    Foga IO; Geiger JD; Parkinson FE
    Eur J Pharmacol; 1996 Dec; 318(2-3):455-60. PubMed ID: 9016938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of iodotubercidin on adenosine kinase activity and nucleoside transport in DDT1 MF-2 smooth muscle cells.
    Parkinson FE; Geiger JD
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1397-401. PubMed ID: 8667202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Adenosine metabolism in human whole blood. Effects of nucleoside transport inhibitors and phosphate concentration.
    Dawicki DD; Agarwal KC; Parks RE
    Biochem Pharmacol; 1988 Feb; 37(4):621-6. PubMed ID: 3342099
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [3H]adenosine transport in DDT1 MF-2 smooth muscle cells: inhibition by metabolites of propentofylline.
    Parkinson FE; Mukherjee K; Geiger JD
    Eur J Pharmacol; 1996 Jul; 308(1):97-102. PubMed ID: 8836637
    [TBL] [Abstract][Full Text] [Related]  

  • 19. [3H]dipyridamole binding to nucleoside transporters from guinea-pig and rat lung.
    Shi MM; Young JD
    Biochem J; 1986 Dec; 240(3):879-83. PubMed ID: 3827876
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evidence that adenine nucleotides modulate nucleoside-transporter function. Characterization of uridine transport in chromaffin cells and plasma membrane vesicles.
    Delicado EG; Casillas T; Sen RP; Miras-Portugal MT
    Eur J Biochem; 1994 Oct; 225(1):355-62. PubMed ID: 7925456
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.