BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 8752596)

  • 1. The extraneuronal transporter for monoamine transmitters exists in cells derived from human central nervous system glia.
    Russ H; Staust K; Martel F; Gliese M; Schomig E
    Eur J Neurosci; 1996 Jun; 8(6):1256-64. PubMed ID: 8752596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The extraneuronal transport mechanism for noradrenaline (uptake2) avidly transports 1-methyl-4-phenylpyridinium (MPP+).
    Russ H; Gliese M; Sonna J; Schömig E
    Naunyn Schmiedebergs Arch Pharmacol; 1992 Aug; 346(2):158-65. PubMed ID: 1448180
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Expression of the extraneuronal monoamine transporter (uptake2) in human glioma cells.
    Streich S; Brüss M; Bönisch H
    Naunyn Schmiedebergs Arch Pharmacol; 1996 Feb; 353(3):328-33. PubMed ID: 8692289
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The extraneuronal monoamine transporter exists in human central nervous system glia.
    Schömig E; Russ H; Staudt K; Martel F; Gliese M; Gründemann D
    Adv Pharmacol; 1998; 42():356-9. PubMed ID: 9327915
    [No Abstract]   [Full Text] [Related]  

  • 5. Catecholamine transporters and 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine neurotoxicity: studies comparing the cloned human noradrenaline and human dopamine transporter.
    Pifl C; Hornykiewicz O; Giros B; Caron MG
    J Pharmacol Exp Ther; 1996 Jun; 277(3):1437-43. PubMed ID: 8667208
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Inward transport of 3H-MPP+ in freshly isolated rat hepatocytes: evidence for interaction with catecholamines.
    Martel F; Martins MJ; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 1996; 354(3):305-11. PubMed ID: 8878060
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [The role of glial monoamine transporters in the central nervous system].
    Inazu M; Takeda H; Matsumiya T
    Nihon Shinkei Seishin Yakurigaku Zasshi; 2003 Aug; 23(4):171-8. PubMed ID: 13677912
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison between uptake2 and rOCT1: effects of catecholamines, metanephrines and corticosterone.
    Martel F; Ribeiro L; Calhau C; Azevedo I
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Apr; 359(4):303-9. PubMed ID: 10344529
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Further characterisation of the interaction of haloperidol metabolites with neurotransmitter transporters in rat neuronal cultures and in transfected COS-7 cells.
    Siebert GA; Pond SM; Bryan-Lluka LJ
    Naunyn Schmiedebergs Arch Pharmacol; 2000 Mar; 361(3):255-64. PubMed ID: 10731037
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Organic cation transporter mRNA and function in the rat superior cervical ganglion.
    Kristufek D; Rudorfer W; Pifl C; Huck S
    J Physiol; 2002 Aug; 543(Pt 1):117-34. PubMed ID: 12181285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Extraneuronal monoamine transporter and organic cation transporters 1 and 2: a review of transport efficiency.
    Schömig E; Lazar A; Gründemann D
    Handb Exp Pharmacol; 2006; (175):151-80. PubMed ID: 16722235
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Astroglial dopamine transport is mediated by norepinephrine transporter.
    Takeda H; Inazu M; Matsumiya T
    Naunyn Schmiedebergs Arch Pharmacol; 2002 Dec; 366(6):620-3. PubMed ID: 12444505
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cyanine-related compounds: a novel class of potent inhibitors of extraneuronal noradrenaline transport.
    Russ H; Sonna J; Keppler K; Baunach S; Schömig E
    Naunyn Schmiedebergs Arch Pharmacol; 1993 Nov; 348(5):458-65. PubMed ID: 8114944
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Expression and functional characterization of the extraneuronal monoamine transporter in normal human astrocytes.
    Inazu M; Takeda H; Matsumiya T
    J Neurochem; 2003 Jan; 84(1):43-52. PubMed ID: 12485400
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Norepinephrine transport by the extraneuronal monoamine transporter in human bronchial arterial smooth muscle cells.
    Horvath G; Sutto Z; Torbati A; Conner GE; Salathe M; Wanner A
    Am J Physiol Lung Cell Mol Physiol; 2003 Oct; 285(4):L829-37. PubMed ID: 12807698
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Apical uptake of organic cations by human intestinal Caco-2 cells: putative involvement of ASF transporters.
    Martel F; Gründemann D; Calhau C; Schömig E
    Naunyn Schmiedebergs Arch Pharmacol; 2001 Jan; 363(1):40-9. PubMed ID: 11191835
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pharmacological characterization of dopamine transport in cultured rat astrocytes.
    Inazu M; Kubota N; Takeda H; Zhang J; Kiuchi Y; Oguchi K; Matsumiya T
    Life Sci; 1999; 64(24):2239-45. PubMed ID: 10374914
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The localisation of the extraneuronal monoamine transporter (EMT) in rat brain.
    Haag C; Berkels R; Gründemann D; Lazar A; Taubert D; Schömig E
    J Neurochem; 2004 Jan; 88(2):291-7. PubMed ID: 14690517
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transport of small organic cations in the rat liver. The role of the organic cation transporter OCT1.
    Martel F; Vetter T; Russ H; Gründemann D; Azevedo I; Koepsell H; Schömig E
    Naunyn Schmiedebergs Arch Pharmacol; 1996; 354(3):320-6. PubMed ID: 8878062
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selective substrates for non-neuronal monoamine transporters.
    Gründemann D; Liebich G; Kiefer N; Köster S; Schömig E
    Mol Pharmacol; 1999 Jul; 56(1):1-10. PubMed ID: 10385678
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.