BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 8752844)

  • 21. Regulation of pigmentation in cultured skin substitutes by cytometric sorting of melanocytes and keratinocytes.
    Swope VB; Supp AP; Cornelius JR; Babcock GF; Boyce ST
    J Invest Dermatol; 1997 Sep; 109(3):289-95. PubMed ID: 9284092
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genetically modified human keratinocytes overexpressing PDGF-A enhance the performance of a composite skin graft.
    Eming SA; Medalie DA; Tompkins RG; Yarmush ML; Morgan JR
    Hum Gene Ther; 1998 Mar; 9(4):529-39. PubMed ID: 9525314
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Medium flow rate regulates viability and barrier function of engineered skin substitutes in perfusion culture.
    Kalyanaraman B; Supp DM; Boyce ST
    Tissue Eng Part A; 2008 May; 14(5):583-93. PubMed ID: 18399733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Genetic modification of cultured skin substitutes by transduction of human keratinocytes and fibroblasts with platelet-derived growth factor-A.
    Supp DM; Bell SM; Morgan JR; Boyce ST
    Wound Repair Regen; 2000; 8(1):26-35. PubMed ID: 10760212
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Influence of electrospun collagen on wound contraction of engineered skin substitutes.
    Powell HM; Supp DM; Boyce ST
    Biomaterials; 2008 Mar; 29(7):834-43. PubMed ID: 18054074
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Skin wound closure in athymic mice with cultured human cells, biopolymers, and growth factors.
    Boyce ST; Foreman TJ; English KB; Stayner N; Cooper ML; Sakabu S; Hansbrough JF
    Surgery; 1991 Nov; 110(5):866-76. PubMed ID: 1948657
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Evaluation of dermal-epidermal skin equivalents ('composite-skin') of human keratinocytes in a collagen-glycosaminoglycan matrix(Integra artificial skin).
    Kremer M; Lang E; Berger AC
    Br J Plast Surg; 2000 Sep; 53(6):459-65. PubMed ID: 10927672
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Engineered human skin substitutes undergo large-scale genomic reprogramming and normal skin-like maturation after transplantation to athymic mice.
    Klingenberg JM; McFarland KL; Friedman AJ; Boyce ST; Aronow BJ; Supp DM
    J Invest Dermatol; 2010 Feb; 130(2):587-601. PubMed ID: 19798058
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Keratin expression in cultured skin substitutes suggests that the hyperproliferative phenotype observed in vitro is normalized after grafting.
    Smiley AK; Klingenberg JM; Boyce ST; Supp DM
    Burns; 2006 Mar; 32(2):135-8. PubMed ID: 16455203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Wound-healing factors secreted by epidermal keratinocytes and dermal fibroblasts in skin substitutes.
    Spiekstra SW; Breetveld M; Rustemeyer T; Scheper RJ; Gibbs S
    Wound Repair Regen; 2007; 15(5):708-17. PubMed ID: 17971017
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Comparative assessment of cultured skin substitutes and native skin autograft for treatment of full-thickness burns.
    Boyce ST; Goretsky MJ; Greenhalgh DG; Kagan RJ; Rieman MT; Warden GD
    Ann Surg; 1995 Dec; 222(6):743-52. PubMed ID: 8526581
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Differential expression of matrix metalloproteinase-1 in vitro corresponds to tissue morphogenesis and quality assurance of cultured skin substitutes.
    Swope VB; Boyce ST
    J Surg Res; 2005 Sep; 128(1):79-86. PubMed ID: 15936034
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Rapid creation of skin substitutes from human skin cells and biomimetic nanofibers for acute full-thickness wound repair.
    Mahjour SB; Fu X; Yang X; Fong J; Sefat F; Wang H
    Burns; 2015 Dec; 41(8):1764-1774. PubMed ID: 26187057
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Expression of interleukin-1alpha, interleukin-6, and basic fibroblast growth factor by cultured skin substitutes before and after grafting to full-thickness wounds in athymic mice.
    Goretsky MJ; Harriger MD; Supp AP; Greenhalgh DG; Boyce ST
    J Trauma; 1996 Jun; 40(6):894-899; discussion 899-900. PubMed ID: 8656474
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Cultured autologous keratinocytes in suspension accelerate epithelial maturation in an in vivo wound model as measured by surface electrical capacitance.
    Magnusson M; Papini RP; Rea SM; Reed CC; Wood FM
    Plast Reconstr Surg; 2007 Feb; 119(2):495-9. PubMed ID: 17230081
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Epidermal Regeneration of Cultured Autograft, Allograft, and Xenograft Keratinocytes Transplanted on Full-Thickness Wounds in Rabbits.
    Hanifi N; Halim AS; Aleas CF; Singh J; Marzuki M; Win TT; Keong LC; Kannan TP; Dorai AA
    Exp Clin Transplant; 2015 Jun; 13(3):273-8. PubMed ID: 26086837
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Cultivation and transplantation of epidermal keratinocytes.
    Terskikh VV; Vasiliev AV
    Int Rev Cytol; 1999; 188():41-72. PubMed ID: 10208010
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Culture of keratinocytes for transplantation without the need of feeder layer cells.
    Coolen NA; Verkerk M; Reijnen L; Vlig M; van den Bogaerdt AJ; Breetveld M; Gibbs S; Middelkoop E; Ulrich MM
    Cell Transplant; 2007; 16(6):649-61. PubMed ID: 17912956
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Pigmentation and microanatomy of skin regenerated from composite grafts of cultured cells and biopolymers applied to full-thickness burn wounds.
    Harriger MD; Warden GD; Greenhalgh DG; Kagan RJ; Boyce ST
    Transplantation; 1995 Mar; 59(5):702-7. PubMed ID: 7886796
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Principles and practices for treatment of cutaneous wounds with cultured skin substitutes.
    Boyce ST; Warden GD
    Am J Surg; 2002 Apr; 183(4):445-56. PubMed ID: 11975935
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.