BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

133 related articles for article (PubMed ID: 8755060)

  • 21. Targeted disruption of the tyrosine hydroxylase gene reveals that catecholamines are required for mouse fetal development.
    Zhou QY; Quaife CJ; Palmiter RD
    Nature; 1995 Apr; 374(6523):640-3. PubMed ID: 7715703
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Characterization of behavioral response to amphetamine, tyrosine hydroxylase levels, and dopamine receptor levels in neurokinin 3 receptor knockout mice.
    Nordquist RE; Savignac H; Pauly-Evers M; Walker G; Knoflach F; Borroni E; Glaentzlin P; Bohrmann B; Messer J; Ozmen L; Albientz A; Spooren W
    Behav Pharmacol; 2008 Sep; 19(5-6):518-29. PubMed ID: 18690106
    [TBL] [Abstract][Full Text] [Related]  

  • 23. The conditioned enhancement of neutrophil activity is catecholamine dependent.
    Chao HJ; Hsu YC; Yuan HP; Jiang HS; Hsueh CM
    J Neuroimmunol; 2005 Jan; 158(1-2):159-69. PubMed ID: 15589050
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Stress-induced alterations in catecholamine enzymes gene expression in the hypothalamic dorsomedial nucleus are modulated by caudal brain and not hypothalamic paraventricular nucleus neurons.
    Mravec B; Lukackova R; Bodnar I; Kiss A; Pacak K; Palkovits M; Kvetnansky R
    Brain Res Bull; 2007 Sep; 74(1-3):147-54. PubMed ID: 17683801
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Distribution of tyrosine hydroxylase, dopamine, and serotonin in the central nervous system of amphioxus (Branchiostoma lanceolatum): implications for the evolution of catecholamine systems in vertebrates.
    Moret F; Guilland JC; Coudouel S; Rochette L; Vernier P
    J Comp Neurol; 2004 Jan; 468(1):135-50. PubMed ID: 14648696
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Decreased tyrosine hydroxylase activity in the adrenals of spontaneously hypertensive rats.
    Moura E; Pinho Costa PM; Moura D; GuimarĂ£es S; Vieira-Coelho MA
    Life Sci; 2005 May; 76(25):2953-64. PubMed ID: 15820506
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tyrosine hydroxylase activity and its mRNA level in dopaminergic neurons of tenascin gene knockout mouse.
    Fukamauchi F; Mataga N; Wang YJ; Sato S; Yoshiki A; Kusakabe M
    Biochem Biophys Res Commun; 1997 Feb; 231(2):356-9. PubMed ID: 9070278
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A developmental role for catecholamines in Drosophila behavior.
    Pendleton RG; Rasheed A; Paluru P; Joyner J; Jerome N; Meyers RD; Hillman R
    Pharmacol Biochem Behav; 2005 Aug; 81(4):849-53. PubMed ID: 16051344
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Nuclear organization and morphology of cholinergic, putative catecholaminergic and serotonergic neurons in the brains of two species of African mole-rat.
    Bhagwandin A; Fuxe K; Bennett NC; Manger PR
    J Chem Neuroanat; 2008 Jul; 35(4):371-87. PubMed ID: 18407460
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Strain differences in the effects of adrenalectomy on the midbrain dopamine system: implication for behavioral sensitization to cocaine.
    de Jong IE; Steenbergen PJ; de Kloet ER
    Neuroscience; 2008 May; 153(3):594-604. PubMed ID: 18420350
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Effects of environmental enrichment on males of a docile inbred strain of mice.
    Marashi V; Barnekow A; Sachser N
    Physiol Behav; 2004 Oct; 82(5):765-76. PubMed ID: 15451640
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [The relation of tryptophan hydroxylase activity in the brain and the manifestation of catalepsy in mice].
    Kulikov AV; Kudriavtseva NN; Kozlachkova EIu; Popova NK
    Biull Eksp Biol Med; 1989 Sep; 108(9):269-71. PubMed ID: 2611380
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Genotype differences in behavior and tyrosine hydroxylase expression between wild-type and progesterone receptor knockout mice.
    Woolley SC; O'Malley B; Lydon J; Crews D
    Behav Brain Res; 2006 Feb; 167(2):197-204. PubMed ID: 16413068
    [TBL] [Abstract][Full Text] [Related]  

  • 34. A genetic analysis of behavior: a neurochemical approach.
    Oliverio A; Castellano C; Ebel A; Mandel P
    Adv Biochem Psychopharmacol; 1974; 11(0):411-8. PubMed ID: 4602670
    [No Abstract]   [Full Text] [Related]  

  • 35. High dopamine turnover in the brains of Sandy mice.
    Murotani T; Ishizuka T; Hattori S; Hashimoto R; Matsuzaki S; Yamatodani A
    Neurosci Lett; 2007 Jun; 421(1):47-51. PubMed ID: 17548156
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Differential expression of dopamine D2 and D4 receptor and tyrosine hydroxylase mRNA in mice prone, or resistant, to chronic high-fat diet-induced obesity.
    Huang XF; Yu Y; Zavitsanou K; Han M; Storlien L
    Brain Res Mol Brain Res; 2005 Apr; 135(1-2):150-61. PubMed ID: 15857678
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Genetic control of the number of dopamine neurons in the brain: relationship to behavior and responses to psychoactive drugs.
    Reis DJ; Fink JS; Baker H
    Res Publ Assoc Res Nerv Ment Dis; 1983; 60():55-75. PubMed ID: 6130586
    [No Abstract]   [Full Text] [Related]  

  • 38. Catecholamine synthesis is mediated by tyrosinase in the absence of tyrosine hydroxylase.
    Rios M; Habecker B; Sasaoka T; Eisenhofer G; Tian H; Landis S; Chikaraishi D; Roffler-Tarlov S
    J Neurosci; 1999 May; 19(9):3519-26. PubMed ID: 10212311
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Features of adrenal gland and gonadal reactions in mice with a genetic predisposition to dominance under zoo-social stress].
    Serova LI; Naumenko EV
    Genetika; 1991 Oct; 27(10):1820-5. PubMed ID: 1778454
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Effects of homocysteine on the dopaminergic system and behavior in rodents.
    Lee ES; Chen H; Soliman KF; Charlton CG
    Neurotoxicology; 2005 Jun; 26(3):361-71. PubMed ID: 15935208
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.