BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

234 related articles for article (PubMed ID: 8755509)

  • 1. Enhanced sensitivity of ubiquinone-deficient mutants of Saccharomyces cerevisiae to products of autoxidized polyunsaturated fatty acids.
    Do TQ; Schultz JR; Clarke CF
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7534-9. PubMed ID: 8755509
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Sensitivity to treatment with polyunsaturated fatty acids is a general characteristic of the ubiquinone-deficient yeast coq mutants.
    Poon WW; Do TQ; Marbois BN; Clarke CF
    Mol Aspects Med; 1997; 18 Suppl():S121-7. PubMed ID: 9266513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characterization of Saccharomyces cerevisiae ubiquinone-deficient mutants.
    Schultz JR; Clarke CF
    Biofactors; 1999; 9(2-4):121-9. PubMed ID: 10416023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Isotope-reinforced polyunsaturated fatty acids protect yeast cells from oxidative stress.
    Hill S; Hirano K; Shmanai VV; Marbois BN; Vidovic D; Bekish AV; Kay B; Tse V; Fine J; Clarke CF; Shchepinov MS
    Free Radic Biol Med; 2011 Jan; 50(1):130-8. PubMed ID: 20955788
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Autoxidation of ubiquinol-6 is independent of superoxide dismutase.
    Schultz JR; Ellerby LM; Gralla EB; Valentine JS; Clarke CF
    Biochemistry; 1996 May; 35(21):6595-603. PubMed ID: 8639607
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Genetic evidence for coenzyme Q requirement in plasma membrane electron transport.
    Santos-Ocaña C; Villalba JM; Córdoba F; Padilla S; Crane FL; Clarke CF; Navas P
    J Bioenerg Biomembr; 1998 Oct; 30(5):465-75. PubMed ID: 9932649
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Superoxide dismutase deficiency and the toxicity of the products of autooxidation of polyunsaturated fatty acids in yeast.
    Biliński T; Litwińska J; Błaszczyński M; Bajus A
    Biochim Biophys Acta; 1989 Jan; 1001(1):102-6. PubMed ID: 2563227
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Demethoxy-Q, an intermediate of coenzyme Q biosynthesis, fails to support respiration in Saccharomyces cerevisiae and lacks antioxidant activity.
    Padilla S; Jonassen T; Jiménez-Hidalgo MA; Fernández-Ayala DJ; López-Lluch G; Marbois B; Navas P; Clarke CF; Santos-Ocaña C
    J Biol Chem; 2004 Jun; 279(25):25995-6004. PubMed ID: 15078893
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A conserved START domain coenzyme Q-binding polypeptide is required for efficient Q biosynthesis, respiratory electron transport, and antioxidant function in Saccharomyces cerevisiae.
    Allan CM; Hill S; Morvaridi S; Saiki R; Johnson JS; Liau WS; Hirano K; Kawashima T; Ji Z; Loo JA; Shepherd JN; Clarke CF
    Biochim Biophys Acta; 2013 Apr; 1831(4):776-791. PubMed ID: 23270816
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Small amounts of isotope-reinforced polyunsaturated fatty acids suppress lipid autoxidation.
    Hill S; Lamberson CR; Xu L; To R; Tsui HS; Shmanai VV; Bekish AV; Awad AM; Marbois BN; Cantor CR; Porter NA; Clarke CF; Shchepinov MS
    Free Radic Biol Med; 2012 Aug; 53(4):893-906. PubMed ID: 22705367
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The determination of TBA-reactive substances and alkenals in the presence of antioxidants.
    Balthazary ST; Sallmann HP; Fuhrmann H
    Acta Vet Hung; 1999; 47(2):155-9. PubMed ID: 10344076
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A critical role for very long-chain fatty acid elongases in oleic acid-mediated Saccharomyces cerevisiae cytotoxicity.
    Wang Q; Du X; Ma K; Shi P; Liu W; Sun J; Peng M; Huang Z
    Microbiol Res; 2018 Mar; 207():1-7. PubMed ID: 29458843
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Genetic evidence for a multi-subunit complex in the O-methyltransferase steps of coenzyme Q biosynthesis.
    Hsu AY; Do TQ; Lee PT; Clarke CF
    Biochim Biophys Acta; 2000 Apr; 1484(2-3):287-97. PubMed ID: 10760477
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The respiratory chain in a ubiquinone-deficient mutant of Saccharomyces cerevisiae.
    De Kok J; Slater EC
    Biochim Biophys Acta; 1975 Jan; 376(1):27-41. PubMed ID: 235982
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ubiquinone biosynthesis in Saccharomyces cerevisiae. Isolation and sequence of COQ3, the 3,4-dihydroxy-5-hexaprenylbenzoate methyltransferase gene.
    Clarke CF; Williams W; Teruya JH
    J Biol Chem; 1991 Sep; 266(25):16636-44. PubMed ID: 1885593
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Role of antioxidants on the stimulation of the mitogenic response.
    Corwin LM; Shloss J
    J Nutr; 1980 Dec; 110(12):2497-505. PubMed ID: 7441377
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Role of coenzyme Q in the mitochondrial respiratory chain. Reconstitution of activity in coenzyme Q deficient mutants of yeast.
    Brown GG; Beattie DS
    Biochemistry; 1977 Oct; 16(20):4449-54. PubMed ID: 199236
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Genetic evidence for a multi-subunit complex in coenzyme Q biosynthesis in yeast and the role of the Coq1 hexaprenyl diphosphate synthase.
    Gin P; Clarke CF
    J Biol Chem; 2005 Jan; 280(4):2676-81. PubMed ID: 15548532
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of n-3 fatty acids on the growth of human breast cancer cells in vitro: relationship to peroxides and vitamin-E.
    Chajès V; Sattler W; Stranzl A; Kostner GM
    Breast Cancer Res Treat; 1995 Jun; 34(3):199-212. PubMed ID: 7579484
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Uptake of exogenous coenzyme Q and transport to mitochondria is required for bc1 complex stability in yeast coq mutants.
    Santos-Ocaña C; Do TQ; Padilla S; Navas P; Clarke CF
    J Biol Chem; 2002 Mar; 277(13):10973-81. PubMed ID: 11788608
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.