These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
266 related articles for article (PubMed ID: 8755521)
1. Internal molecular motions of bacteriorhodopsin: hydration-induced flexibility studied by quasielastic incoherent neutron scattering using oriented purple membranes. Fitter J; Lechner RE; Buldt G; Dencher NA Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7600-5. PubMed ID: 8755521 [TBL] [Abstract][Full Text] [Related]
2. Molecular motions and hydration of purple membranes and disk membranes studied by neutron scattering. Fitter J; Ernst OP; Hauss T; Lechner RE; Hofmann KP; Dencher NA Eur Biophys J; 1998; 27(6):638-45. PubMed ID: 9791944 [TBL] [Abstract][Full Text] [Related]
3. Moist and soft, dry and stiff: a review of neutron experiments on hydration-dynamics-activity relations in the purple membrane of Halobacterium salinarum. Zaccai G Biophys Chem; 2000 Aug; 86(2-3):249-57. PubMed ID: 11026689 [TBL] [Abstract][Full Text] [Related]
4. Thermal motions in bacteriorhodopsin at different hydration levels studied by neutron scattering: correlation with kinetics and light-induced conformational changes. Lehnert U; Réat V; Weik M; Zaccaï G; Pfister C Biophys J; 1998 Oct; 75(4):1945-52. PubMed ID: 9746535 [TBL] [Abstract][Full Text] [Related]
5. Picosecond molecular motions in bacteriorhodopsin from neutron scattering. Fitter J; Lechner RE; Dencher NA Biophys J; 1997 Oct; 73(4):2126-37. PubMed ID: 9336208 [TBL] [Abstract][Full Text] [Related]
6. Function and picosecond dynamics of bacteriorhodopsin in purple membrane at different lipidation and hydration. Fitter J; Verclas SA; Lechner RE; Seelert H; Dencher NA FEBS Lett; 1998 Aug; 433(3):321-5. PubMed ID: 9744819 [TBL] [Abstract][Full Text] [Related]
7. Thermal motions and function of bacteriorhodopsin in purple membranes: effects of temperature and hydration studied by neutron scattering. Ferrand M; Dianoux AJ; Petry W; Zaccaï G Proc Natl Acad Sci U S A; 1993 Oct; 90(20):9668-72. PubMed ID: 8415760 [TBL] [Abstract][Full Text] [Related]
8. Dynamics of different functional parts of bacteriorhodopsin: H-2H labeling and neutron scattering. Réat V; Patzelt H; Ferrand M; Pfister C; Oesterhelt D; Zaccai G Proc Natl Acad Sci U S A; 1998 Apr; 95(9):4970-5. PubMed ID: 9560212 [TBL] [Abstract][Full Text] [Related]
9. Dynamical heterogeneity of specific amino acids in bacteriorhodopsin. Wood K; Grudinin S; Kessler B; Weik M; Johnson M; Kneller GR; Oesterhelt D; Zaccai G J Mol Biol; 2008 Jul; 380(3):581-91. PubMed ID: 18565346 [TBL] [Abstract][Full Text] [Related]
10. Relationship between structure, dynamics and function of hydrated purple membrane investigated by neutron scattering and dielectric spectroscopy. Buchsteiner A; Lechner RE; Hauss T; Dencher NA J Mol Biol; 2007 Aug; 371(4):914-23. PubMed ID: 17599349 [TBL] [Abstract][Full Text] [Related]
11. Hydration dependence of active core fluctuations in bacteriorhodopsin. Wood K; Lehnert U; Kessler B; Zaccai G; Oesterhelt D Biophys J; 2008 Jul; 95(1):194-202. PubMed ID: 18339747 [TBL] [Abstract][Full Text] [Related]
12. Proton channel hydration and dynamics of a bacteriorhodopsin triple mutant with an M-state-like conformation. Lehnert U; Réat V; Zaccai G; Oesterhelt D Eur Biophys J; 2005 Jun; 34(4):344-52. PubMed ID: 15688183 [TBL] [Abstract][Full Text] [Related]
13. Functionally relevant coupled dynamic profile of bacteriorhodopsin and lipids in purple membranes. Kamihira M; Watts A Biochemistry; 2006 Apr; 45(13):4304-13. PubMed ID: 16566605 [TBL] [Abstract][Full Text] [Related]
14. Dynamics of hydration water in deuterated purple membranes explored by neutron scattering. Wood K; Plazanet M; Gabel F; Kessler B; Oesterhelt D; Zaccai G; Weik M Eur Biophys J; 2008 Jun; 37(5):619-26. PubMed ID: 18286273 [TBL] [Abstract][Full Text] [Related]
15. Temperature- and hydration-dependent internal dynamics of stripped human erythrocyte vesicles studied by incoherent neutron scattering. Combet S; Zanotti JM; Bellissent-Funel MC Biochim Biophys Acta; 2011 Feb; 1810(2):202-10. PubMed ID: 21059380 [TBL] [Abstract][Full Text] [Related]
16. Curvature of purple membranes comprising permanently wedge-shaped bacteriorhodopsin molecules is regulated by lipid content. Rhinow D; Hampp N J Phys Chem B; 2010 Jan; 114(1):549-56. PubMed ID: 19908872 [TBL] [Abstract][Full Text] [Related]
17. pH-dependent bending in and out of purple membranes comprising BR-D85T. Baumann RP; Eussner J; Hampp N Phys Chem Chem Phys; 2011 Dec; 13(48):21375-82. PubMed ID: 22033510 [TBL] [Abstract][Full Text] [Related]
18. Chromophore orientation in bacteriorhodopsin determined from the angular dependence of deuterium nuclear magnetic resonance spectra of oriented purple membranes. Moltke S; Nevzorov AA; Sakai N; Wallat I; Job C; Nakanishi K; Heyn MP; Brown MF Biochemistry; 1998 Aug; 37(34):11821-35. PubMed ID: 9718305 [TBL] [Abstract][Full Text] [Related]
19. Structure and hydration of purple membranes in different conditions. Zaccai G J Mol Biol; 1987 Apr; 194(3):569-72. PubMed ID: 3625776 [TBL] [Abstract][Full Text] [Related]
20. How soft is a protein? A protein dynamics force constant measured by neutron scattering. Zaccai G Science; 2000 Jun; 288(5471):1604-7. PubMed ID: 10834833 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]