These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
182 related articles for article (PubMed ID: 8755543)
1. Exon shuffling and the origin of the mitochondrial targeting function in plant cytochrome c1 precursor. Long M; de Souza SJ; Rosenberg C; Gilbert W Proc Natl Acad Sci U S A; 1996 Jul; 93(15):7727-31. PubMed ID: 8755543 [TBL] [Abstract][Full Text] [Related]
2. The presequence of cytochrome c1 from potato mitochondria is encoded on four exons. Wegener S; Schmitz UK Curr Genet; 1993 Sep; 24(3):256-9. PubMed ID: 8221935 [TBL] [Abstract][Full Text] [Related]
3. Cytochrome c1 from potato: a protein with a presequence for targeting to the mitochondrial intermembrane space. Braun HP; Emmermann M; Kruft V; Schmitz UK Mol Gen Genet; 1992 Jan; 231(2):217-25. PubMed ID: 1310521 [TBL] [Abstract][Full Text] [Related]
4. Origin of new genes: evidence from experimental and computational analyses. Long M; Deutsch M; Wang W; Betrán E; Brunet FG; Zhang J Genetica; 2003 Jul; 118(2-3):171-82. PubMed ID: 12868607 [TBL] [Abstract][Full Text] [Related]
5. The GAPDH gene system of the red alga Chondrus crispus: promoter structures, intron/exon organization, genomic complexity and differential expression of genes. Liaud MF; Valentin C; Brandt U; Bouget FY; Kloareg B; Cerff R Plant Mol Biol; 1993 Dec; 23(5):981-94. PubMed ID: 8260635 [TBL] [Abstract][Full Text] [Related]
6. Intron phase correlations and the evolution of the intron/exon structure of genes. Long M; Rosenberg C; Gilbert W Proc Natl Acad Sci U S A; 1995 Dec; 92(26):12495-9. PubMed ID: 8618928 [TBL] [Abstract][Full Text] [Related]
7. Five identical intron positions in ancient duplicated genes of eubacterial origin. Kersanach R; Brinkmann H; Liaud MF; Zhang DX; Martin W; Cerff R Nature; 1994 Jan; 367(6461):387-9. PubMed ID: 8114942 [TBL] [Abstract][Full Text] [Related]
8. Dual targeting of a mitochondrial protein: the case study of cytochrome c1. Rödiger A; Baudisch B; Langner U; Klösgen RB Mol Plant; 2011 Jul; 4(4):679-87. PubMed ID: 21303841 [TBL] [Abstract][Full Text] [Related]
9. The gene for ribosomal protein S10 is present in mitochondria of pea and potato but absent from those of Arabidopsis and Oenothera. Knoop V; Ehrhardt T; Lättig K; Brennicke A Curr Genet; 1995 May; 27(6):559-64. PubMed ID: 7553942 [TBL] [Abstract][Full Text] [Related]
10. Transfer of rps10 from the mitochondrion to the nucleus in Arabidopsis thaliana: evidence for RNA-mediated transfer and exon shuffling at the integration site. Wischmann C; Schuster W FEBS Lett; 1995 Oct; 374(2):152-6. PubMed ID: 7589523 [TBL] [Abstract][Full Text] [Related]
11. rbcS genes in Solanum tuberosum: conservation of transit peptide and exon shuffling during evolution. Wolter FP; Fritz CC; Willmitzer L; Schell J; Schreier PH Proc Natl Acad Sci U S A; 1988 Feb; 85(3):846-50. PubMed ID: 3422467 [TBL] [Abstract][Full Text] [Related]
12. Intron existence predated the divergence of eukaryotes and prokaryotes. Shih MC; Heinrich P; Goodman HM Science; 1988 Nov; 242(4882):1164-6. PubMed ID: 3055302 [TBL] [Abstract][Full Text] [Related]
13. Structure, organization and expression of the genes encoding mitochondrial cytochrome c(1) and the Rieske iron-sulfur protein in Chlamydomonas reinhardtii. Atteia A; van Lis R; Wetterskog D; Gutiérrez-Cirlos EB; Ongay-Larios L; Franzén LG; González-Halphen D Mol Genet Genomics; 2003 Feb; 268(5):637-44. PubMed ID: 12589438 [TBL] [Abstract][Full Text] [Related]
14. Requirements for mini-exon inclusion in potato invertase mRNAs provides evidence for exon-scanning interactions in plants. Simpson CG; Hedley PE; Watters JA; Clark GP; McQuade C; Machray GC; Brown JW RNA; 2000 Mar; 6(3):422-33. PubMed ID: 10744026 [TBL] [Abstract][Full Text] [Related]
15. The 28.5-kDa iron-sulfur protein of mitochondrial complex I is encoded in the nucleus in plants. Schmidt-Bleek K; Heiser V; Thieck O; Brennicke A; Grohmann L Mol Gen Genet; 1997 Jan; 253(4):448-54. PubMed ID: 9037104 [TBL] [Abstract][Full Text] [Related]
16. Intron position as an evolutionary marker of thioredoxins and thioredoxin domains. Sahrawy M; Hecht V; Lopez-Jaramillo J; Chueca A; Chartier Y; Meyer Y J Mol Evol; 1996 Apr; 42(4):422-31. PubMed ID: 8642611 [TBL] [Abstract][Full Text] [Related]
17. Evolutionary history of exon shuffling. França GS; Cancherini DV; de Souza SJ Genetica; 2012 Jun; 140(4-6):249-57. PubMed ID: 22948334 [TBL] [Abstract][Full Text] [Related]
18. Transfer of rpl22 to the nucleus greatly preceded its loss from the chloroplast and involved the gain of an intron. Gantt JS; Baldauf SL; Calie PJ; Weeden NF; Palmer JD EMBO J; 1991 Oct; 10(10):3073-8. PubMed ID: 1915281 [TBL] [Abstract][Full Text] [Related]
19. Molecular characterization of a novel, nuclear-encoded, NAD(+)-dependent glyceraldehyde-3-phosphate dehydrogenase in plastids of the gymnosperm Pinus sylvestris L. Meyer-Gauen G; Schnarrenberger C; Cerff R; Martin W Plant Mol Biol; 1994 Nov; 26(4):1155-66. PubMed ID: 7811973 [TBL] [Abstract][Full Text] [Related]
20. Gene structure, expression in Escherichia coli and biochemical properties of the NAD+ -dependent glyceraldehyde-3-phosphate dehydrogenase from Pinus sylvestris chloroplasts. Meyer-Gauen G; Herbrand H; Pahnke J; Cerff R; Martin W Gene; 1998 Mar; 209(1-2):167-74. PubMed ID: 9583948 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]