BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 8755607)

  • 1. Sensitivity of a renal K+ channel (ROMK2) to the inhibitory sulfonylurea compound glibenclamide is enhanced by coexpression with the ATP-binding cassette transporter cystic fibrosis transmembrane regulator.
    McNicholas CM; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Proc Natl Acad Sci U S A; 1996 Jul; 93(15):8083-8. PubMed ID: 8755607
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A functional CFTR-NBF1 is required for ROMK2-CFTR interaction.
    McNicholas CM; Nason MW; Guggino WB; Schwiebert EM; Hebert SC; Giebisch G; Egan ME
    Am J Physiol; 1997 Nov; 273(5):F843-8. PubMed ID: 9374850
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rat homolog of sulfonylurea receptor 2B determines glibenclamide sensitivity of ROMK2 in Xenopus laevis oocyte.
    Tanemoto M; Vanoye CG; Dong K; Welch R; Abe T; Hebert SC; Xu JZ
    Am J Physiol Renal Physiol; 2000 Apr; 278(4):F659-66. PubMed ID: 10751228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Cystic fibrosis transmembrane conductance regulator mediates sulphonylurea block of the inwardly rectifying K+ channel Kir6.1.
    Ishida-Takahashi A; Otani H; Takahashi C; Washizuka T; Tsuji K; Noda M; Horie M; Sasayama S
    J Physiol; 1998 Apr; 508 ( Pt 1)(Pt 1):23-30. PubMed ID: 9490811
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Identification of the cystic fibrosis transmembrane conductance regulator domains that are important for interactions with ROMK2.
    Cahill P; Nason MW; Ambrose C; Yao TY; Thomas P; Egan ME
    J Biol Chem; 2000 Jun; 275(22):16697-701. PubMed ID: 10748197
    [TBL] [Abstract][Full Text] [Related]  

  • 6. CFTR is required for PKA-regulated ATP sensitivity of Kir1.1 potassium channels in mouse kidney.
    Lu M; Leng Q; Egan ME; Caplan MJ; Boulpaep EL; Giebisch GH; Hebert SC
    J Clin Invest; 2006 Mar; 116(3):797-807. PubMed ID: 16470247
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The first-nucleotide binding domain of the cystic-fibrosis transmembrane conductance regulator is important for inhibition of the epithelial Na+ channel.
    Schreiber R; Hopf A; Mall M; Greger R; Kunzelmann K
    Proc Natl Acad Sci U S A; 1999 Apr; 96(9):5310-5. PubMed ID: 10220462
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of ATP-sensitive K+ channel regulators on cystic fibrosis transmembrane conductance regulator chloride currents.
    Sheppard DN; Welsh MJ
    J Gen Physiol; 1992 Oct; 100(4):573-91. PubMed ID: 1281220
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Sulfonylurea receptors inhibit the epithelial sodium channel (ENaC) by reducing surface expression.
    Konstas AA; Bielfeld-Ackermann A; Korbmacher C
    Pflugers Arch; 2001 Aug; 442(5):752-61. PubMed ID: 11512032
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Potent inhibition of the CFTR chloride channel by suramin.
    Bachmann A; Russ U; Quast U
    Naunyn Schmiedebergs Arch Pharmacol; 1999 Oct; 360(4):473-6. PubMed ID: 10551285
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mouse cystic fibrosis transmembrane conductance regulator forms cAMP-PKA-regulated apical chloride channels in cortical collecting duct.
    Lu M; Dong K; Egan ME; Giebisch GH; Boulpaep EL; Hebert SC
    Proc Natl Acad Sci U S A; 2010 Mar; 107(13):6082-7. PubMed ID: 20231442
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Chloride channel and chloride conductance regulator domains of CFTR, the cystic fibrosis transmembrane conductance regulator.
    Schwiebert EM; Morales MM; Devidas S; Egan ME; Guggino WB
    Proc Natl Acad Sci U S A; 1998 Mar; 95(5):2674-9. PubMed ID: 9482946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cystic fibrosis transmembrane conductance regulator-dependent up-regulation of Kir1.1 (ROMK) renal K+ channels by the epithelial sodium channel.
    Konstas AA; Koch JP; Tucker SJ; Korbmacher C
    J Biol Chem; 2002 Jul; 277(28):25377-84. PubMed ID: 11994290
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanism of glibenclamide inhibition of cystic fibrosis transmembrane conductance regulator Cl- channels expressed in a murine cell line.
    Sheppard DN; Robinson KA
    J Physiol; 1997 Sep; 503 ( Pt 2)(Pt 2):333-46. PubMed ID: 9306276
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FLAG epitope positioned in an external loop preserves normal biophysical properties of CFTR.
    Schultz BD; Takahashi A; Liu C; Frizzell RA; Howard M
    Am J Physiol; 1997 Dec; 273(6):C2080-9. PubMed ID: 9435515
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Glibenclamide stimulates fluid secretion in rodent cholangiocytes through a cystic fibrosis transmembrane conductance regulator-independent mechanism.
    Spirlì C; Fiorotto R; Song L; Santos-Sacchi J; Okolicsanyi L; Masier S; Rocchi L; Vairetti MP; De Bernard M; Melero S; Pozzan T; Strazzabosco M
    Gastroenterology; 2005 Jul; 129(1):220-33. PubMed ID: 16012949
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ca2+-activated Cl- channels can substitute for CFTR in stimulation of pancreatic duct bicarbonate secretion.
    Zsembery A; Strazzabosco M; Graf J
    FASEB J; 2000 Nov; 14(14):2345-56. PubMed ID: 11053257
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic sensitivity of Kir1.1 (ROMK) to glibenclamide in the absence of SUR2B. Implications for the identity of the renal ATP-regulated secretory K+ channel.
    Konstas AA; Dabrowski M; Korbmacher C; Tucker SJ
    J Biol Chem; 2002 Jun; 277(24):21346-51. PubMed ID: 11927600
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Novel subunit composition of a renal epithelial KATP channel.
    Ruknudin A; Schulze DH; Sullivan SK; Lederer WJ; Welling PA
    J Biol Chem; 1998 Jun; 273(23):14165-71. PubMed ID: 9603917
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Selectivity of repaglinide and glibenclamide for the pancreatic over the cardiovascular K(ATP) channels.
    Stephan D; Winkler M; Kühner P; Russ U; Quast U
    Diabetologia; 2006 Sep; 49(9):2039-48. PubMed ID: 16865362
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.