BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

174 related articles for article (PubMed ID: 8755621)

  • 1. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition.
    Beckerman JL; Ebbole DJ
    Mol Plant Microbe Interact; 1996 Aug; 9(6):450-6. PubMed ID: 8755621
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea.
    Soanes DM; Kershaw MJ; Cooley RN; Talbot NJ
    Mol Plant Microbe Interact; 2002 Dec; 15(12):1253-67. PubMed ID: 12481998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea.
    Talbot NJ; Ebbole DJ; Hamer JE
    Plant Cell; 1993 Nov; 5(11):1575-90. PubMed ID: 8312740
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins.
    Kershaw MJ; Wakley G; Talbot NJ
    EMBO J; 1998 Jul; 17(14):3838-49. PubMed ID: 9670001
    [TBL] [Abstract][Full Text] [Related]  

  • 5. MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea.
    Talbot NJ; Kershaw MJ; Wakley GE; De Vries O; Wessels J; Hamer JE
    Plant Cell; 1996 Jun; 8(6):985-999. PubMed ID: 12239409
    [TBL] [Abstract][Full Text] [Related]  

  • 6. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization.
    Kim S; Ahn IP; Rho HS; Lee YH
    Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae.
    Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR
    Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea.
    Nishimura M; Park G; Xu JR
    Mol Microbiol; 2003 Oct; 50(1):231-43. PubMed ID: 14507377
    [TBL] [Abstract][Full Text] [Related]  

  • 9. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea.
    Xu JR; Hamer JE
    Genes Dev; 1996 Nov; 10(21):2696-706. PubMed ID: 8946911
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity.
    Li Y; Liu X; Liu M; Wang Y; Zou Y; You Y; Yang L; Hu J; Zhang H; Zheng X; Wang P; Zhang Z
    mBio; 2020 Mar; 11(2):. PubMed ID: 32209696
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea.
    Bhambra GK; Wang ZY; Soanes DM; Wakley GE; Talbot NJ
    Mol Microbiol; 2006 Jul; 61(1):46-60. PubMed ID: 16824094
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea.
    Li L; Xue C; Bruno K; Nishimura M; Xu JR
    Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development.
    Choi W; Dean RA
    Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence.
    Skamnioti P; Gurr SJ
    Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215
    [TBL] [Abstract][Full Text] [Related]  

  • 15. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling.
    Marroquin-Guzman M; Wilson RA
    PLoS Pathog; 2015 Apr; 11(4):e1004851. PubMed ID: 25901357
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea.
    Mitchell TK; Dean RA
    Plant Cell; 1995 Nov; 7(11):1869-78. PubMed ID: 8535140
    [TBL] [Abstract][Full Text] [Related]  

  • 17. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae.
    Li Y; Zhang X; Hu S; Liu H; Xu JR
    PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765
    [TBL] [Abstract][Full Text] [Related]  

  • 18. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea.
    Clergeot PH; Gourgues M; Cots J; Laurans F; Latorse MP; Pepin R; Tharreau D; Notteghem JL; Lebrun MH
    Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6963-8. PubMed ID: 11391010
    [TBL] [Abstract][Full Text] [Related]  

  • 19. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea.
    Balhadère PV; Talbot NJ
    Plant Cell; 2001 Sep; 13(9):1987-2004. PubMed ID: 11549759
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration.
    Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH
    Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.