These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
169 related articles for article (PubMed ID: 8755621)
1. MPG1, a gene encoding a fungal hydrophobin of Magnaporthe grisea, is involved in surface recognition. Beckerman JL; Ebbole DJ Mol Plant Microbe Interact; 1996 Aug; 9(6):450-6. PubMed ID: 8755621 [TBL] [Abstract][Full Text] [Related]
2. Regulation of the MPG1 hydrophobin gene in the rice blast fungus Magnaporthe grisea. Soanes DM; Kershaw MJ; Cooley RN; Talbot NJ Mol Plant Microbe Interact; 2002 Dec; 15(12):1253-67. PubMed ID: 12481998 [TBL] [Abstract][Full Text] [Related]
3. Identification and characterization of MPG1, a gene involved in pathogenicity from the rice blast fungus Magnaporthe grisea. Talbot NJ; Ebbole DJ; Hamer JE Plant Cell; 1993 Nov; 5(11):1575-90. PubMed ID: 8312740 [TBL] [Abstract][Full Text] [Related]
4. Complementation of the mpg1 mutant phenotype in Magnaporthe grisea reveals functional relationships between fungal hydrophobins. Kershaw MJ; Wakley G; Talbot NJ EMBO J; 1998 Jul; 17(14):3838-49. PubMed ID: 9670001 [TBL] [Abstract][Full Text] [Related]
5. MPG1 Encodes a Fungal Hydrophobin Involved in Surface Interactions during Infection-Related Development of Magnaporthe grisea. Talbot NJ; Kershaw MJ; Wakley GE; De Vries O; Wessels J; Hamer JE Plant Cell; 1996 Jun; 8(6):985-999. PubMed ID: 12239409 [TBL] [Abstract][Full Text] [Related]
6. MHP1, a Magnaporthe grisea hydrophobin gene, is required for fungal development and plant colonization. Kim S; Ahn IP; Rho HS; Lee YH Mol Microbiol; 2005 Sep; 57(5):1224-37. PubMed ID: 16101997 [TBL] [Abstract][Full Text] [Related]
7. Differences between appressoria formed by germ tubes and appressorium-like structures developed by hyphal tips in Magnaporthe oryzae. Kong LA; Li GT; Liu Y; Liu MG; Zhang SJ; Yang J; Zhou XY; Peng YL; Xu JR Fungal Genet Biol; 2013 Jul; 56():33-41. PubMed ID: 23591122 [TBL] [Abstract][Full Text] [Related]
8. The G-beta subunit MGB1 is involved in regulating multiple steps of infection-related morphogenesis in Magnaporthe grisea. Nishimura M; Park G; Xu JR Mol Microbiol; 2003 Oct; 50(1):231-43. PubMed ID: 14507377 [TBL] [Abstract][Full Text] [Related]
9. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Xu JR; Hamer JE Genes Dev; 1996 Nov; 10(21):2696-706. PubMed ID: 8946911 [TBL] [Abstract][Full Text] [Related]
10. Peroxisomal carnitine acetyl transferase is required for elaboration of penetration hyphae during plant infection by Magnaporthe grisea. Bhambra GK; Wang ZY; Soanes DM; Wakley GE; Talbot NJ Mol Microbiol; 2006 Jul; 61(1):46-60. PubMed ID: 16824094 [TBL] [Abstract][Full Text] [Related]
11. Magnaporthe oryzae Auxiliary Activity Protein MoAa91 Functions as Chitin-Binding Protein To Induce Appressorium Formation on Artificial Inductive Surfaces and Suppress Plant Immunity. Li Y; Liu X; Liu M; Wang Y; Zou Y; You Y; Yang L; Hu J; Zhang H; Zheng X; Wang P; Zhang Z mBio; 2020 Mar; 11(2):. PubMed ID: 32209696 [TBL] [Abstract][Full Text] [Related]
12. Two PAK kinase genes, CHM1 and MST20, have distinct functions in Magnaporthe grisea. Li L; Xue C; Bruno K; Nishimura M; Xu JR Mol Plant Microbe Interact; 2004 May; 17(5):547-56. PubMed ID: 15141959 [TBL] [Abstract][Full Text] [Related]
13. The adenylate cyclase gene MAC1 of Magnaporthe grisea controls appressorium formation and other aspects of growth and development. Choi W; Dean RA Plant Cell; 1997 Nov; 9(11):1973-83. PubMed ID: 9401122 [TBL] [Abstract][Full Text] [Related]
14. Magnaporthe grisea cutinase2 mediates appressorium differentiation and host penetration and is required for full virulence. Skamnioti P; Gurr SJ Plant Cell; 2007 Aug; 19(8):2674-89. PubMed ID: 17704215 [TBL] [Abstract][Full Text] [Related]
15. GATA-Dependent Glutaminolysis Drives Appressorium Formation in Magnaporthe oryzae by Suppressing TOR Inhibition of cAMP/PKA Signaling. Marroquin-Guzman M; Wilson RA PLoS Pathog; 2015 Apr; 11(4):e1004851. PubMed ID: 25901357 [TBL] [Abstract][Full Text] [Related]
16. The cAMP-dependent protein kinase catalytic subunit is required for appressorium formation and pathogenesis by the rice blast pathogen Magnaporthe grisea. Mitchell TK; Dean RA Plant Cell; 1995 Nov; 7(11):1869-78. PubMed ID: 8535140 [TBL] [Abstract][Full Text] [Related]
17. PKA activity is essential for relieving the suppression of hyphal growth and appressorium formation by MoSfl1 in Magnaporthe oryzae. Li Y; Zhang X; Hu S; Liu H; Xu JR PLoS Genet; 2017 Aug; 13(8):e1006954. PubMed ID: 28806765 [TBL] [Abstract][Full Text] [Related]
18. PLS1, a gene encoding a tetraspanin-like protein, is required for penetration of rice leaf by the fungal pathogen Magnaporthe grisea. Clergeot PH; Gourgues M; Cots J; Laurans F; Latorse MP; Pepin R; Tharreau D; Notteghem JL; Lebrun MH Proc Natl Acad Sci U S A; 2001 Jun; 98(12):6963-8. PubMed ID: 11391010 [TBL] [Abstract][Full Text] [Related]
19. PDE1 encodes a P-type ATPase involved in appressorium-mediated plant infection by the rice blast fungus Magnaporthe grisea. Balhadère PV; Talbot NJ Plant Cell; 2001 Sep; 13(9):1987-2004. PubMed ID: 11549759 [TBL] [Abstract][Full Text] [Related]
20. Expression of Magnaporthe grisea avirulence gene ACE1 is connected to the initiation of appressorium-mediated penetration. Fudal I; Collemare J; Böhnert HU; Melayah D; Lebrun MH Eukaryot Cell; 2007 Mar; 6(3):546-54. PubMed ID: 17142568 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]