These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

90 related articles for article (PubMed ID: 8755659)

  • 1. Transcriptional activation of RACTK1 K+ channel gene by apical alkalization in renal cortical collecting duct cells.
    Ikeda M; Murata M; Miyoshi T; Tamba K; Muto S; Imai M; Suzuki M
    J Clin Invest; 1996 Jul; 98(2):474-81. PubMed ID: 8755659
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrophysiological characterization of RACTK1 K+ channel in stable cell line.
    Suzuki M; Murata M; Ikeda M; Miyoshi T; Imai M
    Am J Physiol; 1996 Mar; 270(3 Pt 1):C964-8. PubMed ID: 8638679
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning of a pH sensitive K+ channel in the kidney.
    Suzuki M
    Nihon Jinzo Gakkai Shi; 1995 Aug; 37(8):422-7. PubMed ID: 7563949
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reinterpretation of the RACTK1 K+ channel.
    Shmukler B; Sun T; Brugnara C; Alper SL
    Am J Physiol; 1997 Jan; 272(1 Pt 1):C350-4. PubMed ID: 9038842
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cloning of a pH-sensitive K+ channel possessing two transmembrane segments.
    Suzuki M; Takahashi K; Ikeda M; Hayakawa H; Ogawa A; Kawaguchi Y; Sakai O
    Nature; 1994 Feb; 367(6464):642-5. PubMed ID: 8107848
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Immunohistochemical localization of pH-sensitive K+ channel, RACTK1.
    Suzuki M; Takigawa T; Kimura K; Koseki C; Imai M
    Am J Physiol; 1995 Aug; 269(2 Pt 1):C496-503. PubMed ID: 7653532
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tracing the origin of the RACTK1 K(+) channel.
    Ortega B; Beesley AH; Hornby D; White SJ
    Biochem Biophys Res Commun; 2000 Oct; 277(1):147-51. PubMed ID: 11027655
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Primary structure and functional expression of a cortical collecting duct Kir channel.
    Welling PA
    Am J Physiol; 1997 Nov; 273(5):F825-36. PubMed ID: 9374848
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary K+ regulates apical membrane expression of maxi-K channels in rabbit cortical collecting duct.
    Najjar F; Zhou H; Morimoto T; Bruns JB; Li HS; Liu W; Kleyman TR; Satlin LM
    Am J Physiol Renal Physiol; 2005 Oct; 289(4):F922-32. PubMed ID: 15914780
    [TBL] [Abstract][Full Text] [Related]  

  • 10. CFTR expression in cortical collecting duct cells.
    Todd-Turla KM; Rusvai E; Náray-Fejes-Tóth A; Fejes-Tóth G
    Am J Physiol; 1996 Jan; 270(1 Pt 2):F237-44. PubMed ID: 8769845
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effects of mineralocorticoid and K+ concentration on K+ secretion and ROMK channel expression in a mouse cortical collecting duct cell line.
    Fodstad H; Gonzalez-Rodriguez E; Bron S; Gaeggeler H; Guisan B; Rossier BC; Horisberger JD
    Am J Physiol Renal Physiol; 2009 May; 296(5):F966-75. PubMed ID: 19297448
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effect of acid/base balance on H-ATPase 31 kD subunit mRNA levels in collecting duct cells.
    Fejes-Tóth G; Náray-Fejes-Tóth A
    Kidney Int; 1995 Nov; 48(5):1420-6. PubMed ID: 8544398
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Developmental expression of ROMK mRNA in rabbit cortical collecting duct.
    Benchimol C; Zavilowitz B; Satlin LM
    Pediatr Res; 2000 Jan; 47(1):46-52. PubMed ID: 10625082
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ca(2+)-dependent K+ channels in the cortical collecting duct of rat.
    Hirsch JR; Schlatter E
    Wien Klin Wochenschr; 1997 Jun; 109(12-13):485-8. PubMed ID: 9261990
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Regulation of AE2 mRNA expression in the cortical collecting duct by acid/base balance.
    Fejes-Tóth G; Rusvai E; Cleaveland ES; Náray-Fejes-Tóth A
    Am J Physiol; 1998 Mar; 274(3):F596-601. PubMed ID: 9530277
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Enhancement of epithelial sodium channel expression in renal cortical collecting ducts cells by advanced glycation end products.
    Chang CT; Wu MS; Tian YC; Chen KH; Yu CC; Liao CH; Hung CC; Yang CW
    Nephrol Dial Transplant; 2007 Mar; 22(3):722-31. PubMed ID: 17192279
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intrarenal distribution of the colonic H,K-ATPase mRNA in rabbit.
    Fejes-Tóth G; Náray-Fejes-Tóth A; Velázquez H
    Kidney Int; 1999 Sep; 56(3):1029-36. PubMed ID: 10469371
    [TBL] [Abstract][Full Text] [Related]  

  • 18. rENaC is the predominant Na+ channel in the apical membrane of the rat renal inner medullary collecting duct.
    Volk KA; Sigmund RD; Snyder PM; McDonald FJ; Welsh MJ; Stokes JB
    J Clin Invest; 1995 Dec; 96(6):2748-57. PubMed ID: 8675644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Short-term effects of uninephrectomy on electrical properties of the cortical collecting duct from rabbit remnant kidneys.
    Muto S; Ebata S; Asano Y
    J Clin Invest; 1994 Jan; 93(1):286-96. PubMed ID: 8282799
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kir4.1/Kir5.1 channel forms the major K+ channel in the basolateral membrane of mouse renal collecting duct principal cells.
    Lachheb S; Cluzeaud F; Bens M; Genete M; Hibino H; Lourdel S; Kurachi Y; Vandewalle A; Teulon J; Paulais M
    Am J Physiol Renal Physiol; 2008 Jun; 294(6):F1398-407. PubMed ID: 18367659
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.