These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
297 related articles for article (PubMed ID: 8755722)
1. State transitions or delta pH-dependent quenching of photosystem II fluorescence in red algae. Delphin E; Duval JC; Etienne AL; Kirilovsky D Biochemistry; 1996 Jul; 35(29):9435-45. PubMed ID: 8755722 [TBL] [Abstract][Full Text] [Related]
2. The origins of nonphotochemical quenching of chlorophyll fluorescence in photosynthesis. Direct quenching by P680+ in photosystem II enriched membranes at low pH. Bruce D; Samson G; Carpenter C Biochemistry; 1997 Jan; 36(4):749-55. PubMed ID: 9020772 [TBL] [Abstract][Full Text] [Related]
3. Fluorescence quenching by chlorophyll cations in photosystem II. Schweitzer RH; Brudvig GW Biochemistry; 1997 Sep; 36(38):11351-9. PubMed ID: 9298954 [TBL] [Abstract][Full Text] [Related]
4. Mechanism of the down regulation of photosynthesis by blue light in the Cyanobacterium synechocystis sp. PCC 6803. Scott M; McCollum C; Vasil'ev S; Crozier C; Espie GS; Krol M; Huner NP; Bruce D Biochemistry; 2006 Jul; 45(29):8952-8. PubMed ID: 16846238 [TBL] [Abstract][Full Text] [Related]
5. Nonphotochemical quenching of excitation energy in photosystem II. A picosecond time-resolved study of the low yield of chlorophyll a fluorescence induced by single-turnover flash in isolated spinach thylakoids. Vasil'ev S; Bruce D Biochemistry; 1998 Aug; 37(31):11046-54. PubMed ID: 9693000 [TBL] [Abstract][Full Text] [Related]
6. The relationship between the binding of dicyclohexylcarbodiimide and quenching of chlorophyll fluorescence in the light-harvesting proteins of photosystem II. Ruban AV; Pesaresi P; Wacker U; Irrgang KD; Bassi R; Horton P Biochemistry; 1998 Aug; 37(33):11586-91. PubMed ID: 9708995 [TBL] [Abstract][Full Text] [Related]
7. Regulation of photosynthesis in the unicellular acidophilic red alga Galdieria sulphuraria. Oesterhelt C; Schmälzlin E; Schmitt JM; Lokstein H Plant J; 2007 Aug; 51(3):500-11. PubMed ID: 17587234 [TBL] [Abstract][Full Text] [Related]
8. Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of photosystem II. Mamedov F; Sayre RT; Styring S Biochemistry; 1998 Oct; 37(40):14245-56. PubMed ID: 9760263 [TBL] [Abstract][Full Text] [Related]
9. The composition and structure of photosystem I-associated antenna from Cyanidioschyzon merolae. Busch A; Nield J; Hippler M Plant J; 2010 Jun; 62(5):886-97. PubMed ID: 20230507 [TBL] [Abstract][Full Text] [Related]
10. Conformational changes and their role in non-radiative energy dissipation in photosystem II reaction centres. Litvín R; Bína D; Siffel P; Vácha F Photochem Photobiol Sci; 2005 Dec; 4(12):999-1002. PubMed ID: 16307113 [TBL] [Abstract][Full Text] [Related]
11. Photosystem II proteins PsbL and PsbJ regulate electron flow to the plastoquinone pool. Ohad I; Dal Bosco C; Herrmann RG; Meurer J Biochemistry; 2004 Mar; 43(8):2297-308. PubMed ID: 14979726 [TBL] [Abstract][Full Text] [Related]
12. Electron flow to photosystem I from stromal reductants in vivo: the size of the pool of stromal reductants controls the rate of electron donation to both rapidly and slowly reducing photosystem I units. Bukhov N; Egorova E; Carpentier R Planta; 2002 Sep; 215(5):812-20. PubMed ID: 12244447 [TBL] [Abstract][Full Text] [Related]
13. [Photoinduced reactivation of photosystem II in Chlorella after prolong incubation without light]. Chemeris IuK; Venediktov PS; Rubin AB Biofizika; 2000; 45(3):484-90. PubMed ID: 10872060 [TBL] [Abstract][Full Text] [Related]
15. Oxygen-evolving Photosystem II core complexes: a new paradigm based on the spectral identification of the charge-separating state, the primary acceptor and assignment of low-temperature fluorescence. Krausz E; Hughes JL; Smith P; Pace R; Peterson Arsköld S Photochem Photobiol Sci; 2005 Sep; 4(9):744-53. PubMed ID: 16121287 [TBL] [Abstract][Full Text] [Related]
16. Photosynthetic acclimation: structural reorganisation of light harvesting antenna--role of redox-dependent phosphorylation of major and minor chlorophyll a/b binding proteins. Kargul J; Barber J FEBS J; 2008 Mar; 275(6):1056-68. PubMed ID: 18318833 [TBL] [Abstract][Full Text] [Related]
18. Thermal energy dissipation in reaction centres and in the antenna of photosystem II protects desiccated poikilohydric mosses against photo-oxidation. Heber U; Bilger W; Shuvalov VA J Exp Bot; 2006; 57(12):2993-3006. PubMed ID: 16893979 [TBL] [Abstract][Full Text] [Related]
19. Measurement of photochemical quenching of absorbed quanta in photosystem I of intact leaves using simultaneous measurements of absorbance changes at 830 nm and thermal dissipation. Bukhov NG; Carpentier R Planta; 2003 Feb; 216(4):630-8. PubMed ID: 12569405 [TBL] [Abstract][Full Text] [Related]
20. Conformational changes in photosynthetic pigment proteins on thylakoid membranes can lead to fast non-photochemical quenching in cyanobacteria. Wang Z; Dong J; Li D Sci China Life Sci; 2012 Aug; 55(8):726-34. PubMed ID: 22932888 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]