BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

292 related articles for article (PubMed ID: 8755727)

  • 1. Tumor suppressor p16INK4A: structural characterization of wild-type and mutant proteins by NMR and circular dichroism.
    Tevelev A; Byeon IJ; Selby T; Ericson K; Kim HJ; Kraynov V; Tsai MD
    Biochemistry; 1996 Jul; 35(29):9475-87. PubMed ID: 8755727
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A minimum folding unit in the ankyrin repeat protein p16(INK4).
    Zhang B; Peng Zy
    J Mol Biol; 2000 Jun; 299(4):1121-32. PubMed ID: 10843863
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mutational effects on the p16INK4a tumor suppressor protein.
    Yang R; Gombart AF; Serrano M; Koeffler HP
    Cancer Res; 1995 Jun; 55(12):2503-6. PubMed ID: 7780957
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Tumor suppressor INK4: comparisons of conformational properties between p16(INK4A) and p18(INK4C).
    Yuan C; Li J; Selby TL; Byeon IJ; Tsai MD
    J Mol Biol; 1999 Nov; 294(1):201-11. PubMed ID: 10556039
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural characterization of the tumor suppressor p16, an ankyrin-like repeat protein.
    Boice JA; Fairman R
    Protein Sci; 1996 Sep; 5(9):1776-84. PubMed ID: 8880901
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Stability and folding of the tumour suppressor protein p16.
    Tang KS; Guralnick BJ; Wang WK; Fersht AR; Itzhaki LS
    J Mol Biol; 1999 Jan; 285(4):1869-86. PubMed ID: 9917418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tumor suppressor INK4: determination of the solution structure of p18INK4C and demonstration of the functional significance of loops in p18INK4C and p16INK4A.
    Li J; Byeon IJ; Ericson K; Poi MJ; O'Maille P; Selby T; Tsai MD
    Biochemistry; 1999 Mar; 38(10):2930-40. PubMed ID: 10074345
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of buried charged groups on cysteine thiol ionization and reactivity in Escherichia coli thioredoxin: structural and functional characterization of mutants of Asp 26 and Lys 57.
    Dyson HJ; Jeng MF; Tennant LL; Slaby I; Lindell M; Cui DS; Kuprin S; Holmgren A
    Biochemistry; 1997 Mar; 36(9):2622-36. PubMed ID: 9054569
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mutational analysis of the thermostable arginine repressor from Bacillus stearothermophilus: dissecting residues involved in DNA binding properties.
    Karaivanova IM; Weigel P; Takahashi M; Fort C; Versavaud A; Van Duyne G; Charlier D; Hallet JN; Glansdorff N; Sakanyan V
    J Mol Biol; 1999 Aug; 291(4):843-55. PubMed ID: 10452892
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Purification and characterization of recombinant forms of murine Tcl1 proteins.
    Du Bois GC; Song SP; Kulikovskaya I; Rothstein JL; Germann MW; Croce CM
    Protein Expr Purif; 2000 Apr; 18(3):277-85. PubMed ID: 10733880
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding topologies of human interleukin-6 and its mutants as studied by NMR spectroscopy.
    Nishimura C; Watanabe A; Gouda H; Shimada I; Arata Y
    Biochemistry; 1996 Jan; 35(1):273-81. PubMed ID: 8555185
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Cysteine scanning mutagenesis at 40 of 76 positions in villin headpiece maps the F-actin binding site and structural features of the domain.
    Doering DS; Matsudaira P
    Biochemistry; 1996 Oct; 35(39):12677-85. PubMed ID: 8841111
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A monomeric human apolipoprotein E carboxyl-terminal domain.
    Fan D; Li Q; Korando L; Jerome WG; Wang J
    Biochemistry; 2004 May; 43(17):5055-64. PubMed ID: 15109264
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Bacterial expression, characterization, and disulfide bond determination of soluble human NTPDase6 (CD39L2) nucleotidase: implications for structure and function.
    Ivanenkov VV; Murphy-Piedmonte DM; Kirley TL
    Biochemistry; 2003 Oct; 42(40):11726-35. PubMed ID: 14529283
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The sterol carrier protein-2 fatty acid binding site: an NMR, circular dichroic, and fluorescence spectroscopic determination.
    Stolowich NJ; Frolov A; Atshaves B; Murphy EJ; Jolly CA; Billheimer JT; Scott AI; Schroeder F
    Biochemistry; 1997 Feb; 36(7):1719-29. PubMed ID: 9048555
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unfolding transition state and intermediates of the tumor suppressor p16INK4a investigated by molecular dynamics simulations.
    Interlandi G; Settanni G; Caflisch A
    Proteins; 2006 Jul; 64(1):178-92. PubMed ID: 16596641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Regulation of the mitochondrial ATP synthase/ATPase complex: cDNA cloning, sequence, overexpression, and secondary structural characterization of a functional protein inhibitor.
    Lebowitz MS; Pedersen PL
    Arch Biochem Biophys; 1993 Feb; 301(1):64-70. PubMed ID: 8442667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A two-alpha-helix extra domain mediates the halophilic character of a plant-type ferredoxin from halophilic archaea.
    Marg BL; Schweimer K; Sticht H; Oesterhelt D
    Biochemistry; 2005 Jan; 44(1):29-39. PubMed ID: 15628843
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and epigenetic alterations of the cyclin-dependent kinase inhibitors p15INK4b and p16INK4a in human thyroid carcinoma cell lines and primary thyroid carcinomas.
    Elisei R; Shiohara M; Koeffler HP; Fagin JA
    Cancer; 1998 Nov; 83(10):2185-93. PubMed ID: 9827724
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Structure, function, and dynamics of the dimerization and DNA-binding domain of oncogenic transcription factor v-Myc.
    Fieber W; Schneider ML; Matt T; Kräutler B; Konrat R; Bister K
    J Mol Biol; 2001 Apr; 307(5):1395-410. PubMed ID: 11292350
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.