These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

211 related articles for article (PubMed ID: 8755890)

  • 1. Effect of nitrate on the autotrophic metabolism of the acetogens Clostridium thermoautotrophicum and Clostridium thermoaceticum.
    Fröstl JM; Seifritz C; Drake HL
    J Bacteriol; 1996 Aug; 178(15):4597-603. PubMed ID: 8755890
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The synthesis of acetyl-CoA by Clostridium thermoaceticum from carbon dioxide, hydrogen, coenzyme A and methyltetrahydrofolate.
    Pezacka E; Wood HG
    Arch Microbiol; 1984 Jan; 137(1):63-9. PubMed ID: 6424623
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nitrate as a preferred electron sink for the acetogen Clostridium thermoaceticum.
    Seifritz C; Daniel SL; Gössner A; Drake HL
    J Bacteriol; 1993 Dec; 175(24):8008-13. PubMed ID: 8253688
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Formate-Dependent Acetogenic Utilization of Glucose by the Fecal Acetogen
    Yao Y; Fu B; Han D; Zhang Y; Liu H
    Appl Environ Microbiol; 2020 Nov; 86(23):. PubMed ID: 32948524
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Energy Conservation Associated with Ethanol Formation from H2 and CO2 in Clostridium autoethanogenum Involving Electron Bifurcation.
    Mock J; Zheng Y; Mueller AP; Ly S; Tran L; Segovia S; Nagaraju S; Köpke M; Dürre P; Thauer RK
    J Bacteriol; 2015 Sep; 197(18):2965-80. PubMed ID: 26148714
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the H2- and CO-dependent chemolithotrophic potentials of the acetogens Clostridium thermoaceticum and Acetogenium kivui.
    Daniel SL; Hsu T; Dean SI; Drake HL
    J Bacteriol; 1990 Aug; 172(8):4464-71. PubMed ID: 2376565
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Anaerobic pathway for conversion of the methyl group of aromatic methyl ethers to acetic acid by Clostridium thermoaceticum.
    el Kasmi A; Rajasekharan S; Ragsdale SW
    Biochemistry; 1994 Sep; 33(37):11217-24. PubMed ID: 7727373
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence that carbon monoxide is an obligatory intermediate in anaerobic acetyl-CoA synthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Sep; 35(37):12119-25. PubMed ID: 8810918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Old acetogens, new light.
    Drake HL; Gössner AS; Daniel SL
    Ann N Y Acad Sci; 2008 Mar; 1125():100-28. PubMed ID: 18378590
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of carbon monoxide dehydrogenase in the autotrophic pathway used by acetogenic bacteria.
    Pezacka E; Wood HG
    Proc Natl Acad Sci U S A; 1984 Oct; 81(20):6261-5. PubMed ID: 6436811
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new pathway of autotrophic growth utilizing carbon monoxide or carbon dioxide and hydrogen.
    Wood HG; Ragsdale SW; Pezacka E
    Biochem Int; 1986 Mar; 12(3):421-40. PubMed ID: 3011003
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancing hydrogen-dependent growth of and carbon dioxide fixation by Clostridium ljungdahlii through nitrate supplementation.
    Emerson DF; Woolston BM; Liu N; Donnelly M; Currie DH; Stephanopoulos G
    Biotechnol Bioeng; 2019 Feb; 116(2):294-306. PubMed ID: 30267586
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biotransformations of carboxylated aromatic compounds by the acetogen Clostridium thermoaceticum: generation of growth-supportive CO2 equivalents under CO2-limited conditions.
    Hsu T; Daniel SL; Lux MF; Drake HL
    J Bacteriol; 1990 Jan; 172(1):212-7. PubMed ID: 2104603
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Nitrate-dependent regulation of acetate biosynthesis and nitrate respiration by Clostridium thermoaceticum.
    Arendsen AF; Soliman MQ; Ragsdale SW
    J Bacteriol; 1999 Mar; 181(5):1489-95. PubMed ID: 10049380
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Chemical Antiquity in Metabolism.
    Mrnjavac N; Schwander L; Brabender M; Martin WF
    Acc Chem Res; 2024 Aug; 57(16):2267-2278. PubMed ID: 39083571
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Life with CO or CO2 and H2 as a source of carbon and energy.
    Wood HG
    FASEB J; 1991 Feb; 5(2):156-63. PubMed ID: 1900793
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Acetyl-coenzyme A synthesis from methyltetrahydrofolate, CO, and coenzyme A by enzymes purified from Clostridium thermoaceticum: attainment of in vivo rates and identification of rate-limiting steps.
    Roberts JR; Lu WP; Ragsdale SW
    J Bacteriol; 1992 Jul; 174(14):4667-76. PubMed ID: 1624454
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of yeast extract on growth and metabolism of H2-utilizing acetogenic bacteria from the human colon.
    Leclerc M; Elfoul-Bensaid L; Bernalier A
    Curr Microbiol; 1998 Sep; 37(3):166-71. PubMed ID: 9688815
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Expression of an aromatic-dependent decarboxylase which provides growth-essential CO2 equivalents for the acetogenic (Wood) pathway of Clostridium thermoaceticum.
    Hsu TD; Lux MF; Drake HL
    J Bacteriol; 1990 Oct; 172(10):5901-7. PubMed ID: 2120194
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of acetyl coenzyme A from carbon monoxide, methyltetrahydrofolate, and coenzyme A by enzymes from Clostridium thermoaceticum.
    Hu SI; Drake HL; Wood HG
    J Bacteriol; 1982 Feb; 149(2):440-8. PubMed ID: 6895749
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.