These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

214 related articles for article (PubMed ID: 8755890)

  • 21. Autotrophic synthesis of activated acetic acid from CO2 in Methanobacterium thermoautotrophicum. Synthesis from tetrahydromethanopterin-bound C1 units and carbon monoxide.
    Länge S; Fuchs G
    Eur J Biochem; 1987 Feb; 163(1):147-54. PubMed ID: 3102234
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Heterologous Expression of the Clostridium carboxidivorans CO Dehydrogenase Alone or Together with the Acetyl Coenzyme A Synthase Enables both Reduction of CO
    Carlson ED; Papoutsakis ET
    Appl Environ Microbiol; 2017 Aug; 83(16):. PubMed ID: 28625981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structure and function of a menaquinone involved in electron transport in membranes of Clostridium thermoautotrophicum and Clostridium thermoaceticum.
    Das A; Hugenholtz J; Van Halbeek H; Ljungdahl LG
    J Bacteriol; 1989 Nov; 171(11):5823-9. PubMed ID: 2808299
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fermentation of glucose, fructose, and xylose by Clostridium thermoaceticum: effect of metals on growth yield, enzymes, and the synthesis of acetate from CO 2 .
    Andreesen JR; Schaupp A; Neurauter C; Brown A; Ljungdahl LG
    J Bacteriol; 1973 May; 114(2):743-51. PubMed ID: 4706193
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Characterization of Clostridium ljungdahlii OTA1: a non-autotrophic hyper ethanol-producing strain.
    Whitham JM; Schulte MJ; Bobay BG; Bruno-Barcena JM; Chinn MS; Flickinger MC; Pawlak JJ; Grunden AM
    Appl Microbiol Biotechnol; 2017 Feb; 101(4):1615-1630. PubMed ID: 27866253
    [TBL] [Abstract][Full Text] [Related]  

  • 26.
    Dahle ML; Papoutsakis ET; Antoniewicz MR
    Metab Eng; 2022 Jul; 72():161-170. PubMed ID: 35307558
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Functional cooperation of the glycine synthase-reductase and Wood-Ljungdahl pathways for autotrophic growth of
    Song Y; Lee JS; Shin J; Lee GM; Jin S; Kang S; Lee JK; Kim DR; Lee EY; Kim SC; Cho S; Kim D; Cho BK
    Proc Natl Acad Sci U S A; 2020 Mar; 117(13):7516-7523. PubMed ID: 32170009
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Adaptation of the acetogen Clostridium thermoautotrophicum to minimal medium.
    Savage MD; Drake HL
    J Bacteriol; 1986 Jan; 165(1):315-8. PubMed ID: 3941046
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Cloning and expression of the gene cluster encoding key proteins involved in acetyl-CoA synthesis in Clostridium thermoaceticum: CO dehydrogenase, the corrinoid/Fe-S protein, and methyltransferase.
    Roberts DL; James-Hagstrom JE; Garvin DK; Gorst CM; Runquist JA; Baur JR; Haase FC; Ragsdale SW
    Proc Natl Acad Sci U S A; 1989 Jan; 86(1):32-6. PubMed ID: 2911576
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Lithotrophic growth and hydrogen metabolism by Clostridium magnum.
    Bomar M; Hippe H; Schink B
    FEMS Microbiol Lett; 1991 Oct; 67(3):347-9. PubMed ID: 1769543
    [TBL] [Abstract][Full Text] [Related]  

  • 31. The autotrophic pathway of acetogenic bacteria. Role of CO dehydrogenase disulfide reductase.
    Pezacka E; Wood HG
    J Biol Chem; 1986 Feb; 261(4):1609-15. PubMed ID: 3080430
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Unleashing hydrogenase activity in carbon monoxide dehydrogenase/acetyl-CoA synthase and pyruvate:ferredoxin oxidoreductase.
    Menon S; Ragsdale SW
    Biochemistry; 1996 Dec; 35(49):15814-21. PubMed ID: 8961945
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The role of tungstate and/or molybdate in the formation of aldehyde oxidoreductase in Clostridium thermoaceticum and other acetogens; immunological distances of such enzymes.
    White H; Simon H
    Arch Microbiol; 1992; 158(2):81-4. PubMed ID: 1417415
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Acetogenic bacteria: what are the in situ consequences of their diverse metabolic versatilities?
    Drake HL; Daniel SL; Küsel K; Matthies C; Kuhner C; Braus-Stromeyer S
    Biofactors; 1997; 6(1):13-24. PubMed ID: 9233536
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of a CO-dependent O-demethylating enzyme system from the acetogen Clostridium thermoaceticum.
    Wu ZR; Daniel SL; Drake HL
    J Bacteriol; 1988 Dec; 170(12):5747-50. PubMed ID: 3192514
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The role of pyruvate ferredoxin oxidoreductase in pyruvate synthesis during autotrophic growth by the Wood-Ljungdahl pathway.
    Furdui C; Ragsdale SW
    J Biol Chem; 2000 Sep; 275(37):28494-9. PubMed ID: 10878009
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Levels of enzymes involved in the synthesis of acetate from CO2 in Clostridium thermoautotrophicum.
    Clark JE; Ragsdale SW; Ljungdahl LG; Wiegel J
    J Bacteriol; 1982 Jul; 151(1):507-9. PubMed ID: 6806250
    [TBL] [Abstract][Full Text] [Related]  

  • 38. CO/CO2 potentiometric titrations of carbon monoxide dehydrogenase from Clostridium thermoaceticum and the effect of CO2.
    Russell WK; Lindahl PA
    Biochemistry; 1998 Jul; 37(28):10016-26. PubMed ID: 9665707
    [TBL] [Abstract][Full Text] [Related]  

  • 39. The autotrophic pathway of acetate synthesis in acetogenic bacteria.
    Ljungdahl LG
    Annu Rev Microbiol; 1986; 40():415-50. PubMed ID: 3096193
    [No Abstract]   [Full Text] [Related]  

  • 40. Role of the [4Fe-4S] cluster in reductive activation of the cobalt center of the corrinoid iron-sulfur protein from Clostridium thermoaceticum during acetate biosynthesis.
    Menon S; Ragsdale SW
    Biochemistry; 1998 Apr; 37(16):5689-98. PubMed ID: 9548955
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.